精英家教网 > 高中数学 > 题目详情
14.对于直线m和平面α,β,若α⊥β,且α∩β=l,则“m⊥l”,是“m⊥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:∵α⊥β,且α∩β=l,
∴当m?α时,若m⊥l,则m⊥β不成立,即充分性不成立,
若m⊥β,∵α∩β=l,∴l?β,
∴m⊥l,即必要性成立,
即“m⊥l”,是“m⊥β”的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,根据线面垂直和面面垂直的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,若∠B=30°,$AB=2\sqrt{3}$,AC=2,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果小明在某一周的第一天和第七天分别吃了2个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有(  )
A.50种B.51种C.140种D.141种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow{m}$≠$\overrightarrow{0}$,λ∈R,$\overrightarrow{a}$=$\overrightarrow{m}$+λ$\overrightarrow{n}$,$\overrightarrow{b}$=3$\overrightarrow{m}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则(  )
A.λ=0B.$\overrightarrow{n}$=$\overrightarrow{0}$C.$\overrightarrow{m}$∥$\overrightarrow{n}$D.$\overrightarrow{m}$∥$\overrightarrow{n}$或λ=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a、b为实数,且a>0,b>0,则(a+b+$\frac{1}{a}$)(a2+$\frac{1}{b}$+$\frac{1}{{a}^{2}}$)的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)的定义域是{x|x≠0},对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.则下列结论正确的是(1),(3)
(1)f(1)=0;       
(2)若a>1,则f(a)-f(-a)>0;    
(3)f(x)在(0,+∞)上是增函数; 
(4)不等式f(x-1)<2的解集为(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}(n∈N)满足a0=0,a1=2,且对一切n∈N,有an+2=2an+1-an+2.
(1)求a2,a3的值;
(2)证明:数列{an-an-1}为等差数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.α,β,γ为平面,l是直线,已知α∩β=l,则“α⊥γ,β⊥γ”是“l⊥γ”的(  )条件.
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设${({1-2x})^8}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_8}{x^8}$,则a0+a1+a2+…+a8=1.

查看答案和解析>>

同步练习册答案