精英家教网 > 高中数学 > 题目详情
9.已知复数$z=\frac{1+3i}{3-i}$,$\overline z$是z的共轭复数,则$\overline z$•z=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

分析 把复数z的分子提取i,约分后化简z,代入$\overline z$•z得答案.

解答 解:∵$z=\frac{1+3i}{3-i}=\frac{(3-i)i}{3-i}=i$,
∴$z•\overline z=i•(-i)=1$.
故选:C.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.判断下列函数的奇偶性.
(1)f(x)=lg(1-sinx)-1g(1+sinx);
(2)f(x)=$\frac{1-co{s}^{2}x}{1-sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A.若点A的纵坐标是$\frac{4}{5}$,那么sinα的值是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从点P(-2,1)向圆x2+y2-2x-2my+m2=0作切线,当切线长最短时,m的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于函数$f(x)=\left\{{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}}\right.$有以下四个命题:
①对于任意的x∈R,都有f(f(x))=1;
②函数f(x)是偶函数;
③若T为一个非零有理数,则f(x+T)=f(x)对任意x∈R恒成立;
④在f(x)图象上存在三个点A,B,C,使得△ABC为等边三角形.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若$bsinA-\sqrt{3}acosB=0$,且b2=ac,则$\frac{a+c}{b}$的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.与sin2016°最接近的数是(  )
A.$\frac{11}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cosx(sinx+cosx),x∈R.
(1)求$f(\frac{5π}{4})$的值;
(2)求函数f(x)的单调递增区间;
(3)求函数f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆x2+y2-2x-2y=0上的点到直线x+y-8=0的距离的最小值是2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案