分析 由已知结合正弦定理求得$tanB=\sqrt{3}$,进一步求得角B,再由b2=ac结合余弦定理变形求得$\frac{a+c}{b}$的值.
解答 解:在△ABC中,由正弦定理,$bsinA-\sqrt{3}acosB=0$可化为$sinB-\sqrt{3}cosB=0$,即$tanB=\sqrt{3}$,
又B∈(0,π),于是$B=\frac{π}{3}$,
又b2=ac,∴b2=a2+c2-2accosB=${a}^{2}+{c}^{2}-2ac×\frac{1}{2}={a}^{2}+{c}^{2}-ac$,
可得4b2=(a+c)2,于是$\frac{a+c}{b}=2$.
故答案为:2.
点评 本题考查正弦定理和余弦定理在解三角形中的应用,考查了灵活变形能力,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $A_5^5$ | B. | $A_2^2$ | ||
| C. | $A_4^2A_2^2$ | D. | $C_2^1C_2^1A_2^2A_2^2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com