精英家教网 > 高中数学 > 题目详情
19.圆x2+y2-2x-2y=0上的点到直线x+y-8=0的距离的最小值是2$\sqrt{2}$.

分析 根据题意可知,当Q为过圆心作直线的垂线与圆的交点的时候,Q到已知直线的距离最短,所以利用点到直线的距离公式求出圆心到直线的距离,然后减去半径即可求出最短距离.

解答 解:把圆的方程化为标准式方程得:(x-1)2+(y-1)2=2,
所以圆心A(1,1),圆的半径r=$\sqrt{2}$,
则圆心A到直线x+y-8=0的距离d=$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$,
所以动点Q到直线距离的最小值为3$\sqrt{2}$-$\sqrt{2}$=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 此题要求学生会将圆的方程化为标准式方程并会根据圆的标准式方程找出圆心坐标和半径,灵活运用点到直线的距离公式化简取值,是一道中档题.此题的关键是找出最短距离时Q的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知复数$z=\frac{1+3i}{3-i}$,$\overline z$是z的共轭复数,则$\overline z$•z=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ex+x2-4的一个零点所在区间为(  )
A.(-3,-2)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在区间[-1,4]上随机的取一个数x,若满足|x|≤m的概率为$\frac{4}{5}$,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=sinx-$\sqrt{3}$cosx-mx(x∈R).若函数f(x)存在极值点.则实数m的取值范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.)已知函数f(x)=lnx+$\frac{a}{x-1}$(α∈R).
(1)讨论函数的单调性;
(2)若函数f(x)在(0,$\frac{1}{e}$)内有极值.
   ①求实数α取值范围:
   ②若x1∈(0,1),x2∈(1,+∞)求证:f(x2)-f(x1)>e+2-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,若存在m∈R,使得向量2$\overrightarrow{a}$-m$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$的夹角也为θ,则cosθ的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足不等式组$\left\{\begin{array}{l}{3x-4≥0}\\{y≥1}\\{3x+y-6≤0}\end{array}\right.$,则$\frac{y}{x}$的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“a=2”是“函数f(x)=x2+2ax-2在区间(-∞,-2]内单调递减”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案