精英家教网 > 高中数学 > 题目详情
8.若x,y满足不等式组$\left\{\begin{array}{l}{3x-4≥0}\\{y≥1}\\{3x+y-6≤0}\end{array}\right.$,则$\frac{y}{x}$的最大值是$\frac{3}{2}$.

分析 画出满足条件的平面区域,求出A的坐标,结合$\frac{y}{x}$的几何意义,求出其最大值即可.

解答 解:画出满足条件的平面区域,如图示:
由$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{3x+y-6=0}\end{array}\right.$,解得A($\frac{4}{3}$,2),
而$\frac{y}{x}$的几何意义表示过平面区域内的点与原点的直线的斜率,
由图象得直线过OA时斜率最大,
∴${(\frac{y}{x})}_{max}$=$\frac{2}{\frac{4}{3}}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cosx(sinx+cosx),x∈R.
(1)求$f(\frac{5π}{4})$的值;
(2)求函数f(x)的单调递增区间;
(3)求函数f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆x2+y2-2x-2y=0上的点到直线x+y-8=0的距离的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线2x+ay+2=0与直线(a+1)x+y-1=0(a∈R),当a=-$\frac{2}{3}$时,两直线垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.根据已知函数y=x2-2x-3的图象,试作出下列各函数的图象:
(1)函数y=-x2+2x+3;
(2)向左平移2个单位;
(3)向上平移2个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若{an}为等差数列,且a12+a42=3,则a3的最大值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{5}{3}$D.$\frac{\sqrt{15}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求曲线y=$\frac{1}{x}$+2x在x=1处切线的斜率,并求该切线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα,tanβ是方程x2-2x-4=0的两个根,求
(1)$\frac{2sin(α+β)-3cos(α+β)}{sin(α+β)+cos(α+β)}$
(2)sin2(α+β)-2sin(α+β)cos(α+β)+3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率是$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案