精英家教网 > 高中数学 > 题目详情
12.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于6+1.5πcm3

分析 根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.

解答 解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,

结合图中数据,计算它的体积为:
V=V三棱柱+V半圆柱=$\frac{1}{2}$×2×2×3+$\frac{1}{2}$•π•12×3=(6+1.5π)cm3
故答案为:6+1.5π.

点评 本题考查了利用三视图求几何体体积的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义域R上的奇函数,且在区间[0,+∞)上单调递增,若$\frac{|f(lnx)-f(ln\frac{1}{x})|}{2}$<f(1),则x的取值范围为(  )
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A(5,3),F是抛物线y2=4x的焦点,P是抛物线上的动点,则△PAF周长的最小值为(  )
A.9B.10C.11D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心在原点,F1,F2分别为左、右焦点,A,B分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p1:若sinx≠0,则sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要条件是$\frac{x}{y}$=-1,则下列命题为真命题的是(  )
A.p1∧p2B.p1∨p2C.p1∧(¬p2D.(¬p1)∨p2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果x,y满足$\left\{{\begin{array}{l}{2x-y+1≤0}\\{x-y+1≥0}\\{2x+y+5≥0}\end{array}}\right.$,则$z=\frac{x+2y-3}{x+1}$的取值范围是(  )
A.$({-∞,-\frac{8}{5}}]∪[{3,+∞})$B.$[{-1,\frac{1}{7}}]$C.(-1,0]∪[3,+∞)D.(-∞,-1]∪[7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且过点$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)若直线l:y=kx+m(k>0)与E相交于P,Q两点,且OP与OQ(O为坐标原点)的斜率之和为2,求O到直线l距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC中,AB=2$\sqrt{3}$,AC+$\sqrt{3}$BC=6,D为AB的中点,当CD取最小值时,△ABC面积为$\frac{3\sqrt{23}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.哈六中在2017年3月中旬举办了一次知识竞赛,经过层层筛选,最后五名同学进入了总决赛.在进行笔答题知识竞赛中,最后一个大题是选做题,要求参加竞赛的五名选手从2道题中选做一道进行解答,假设这5位选手选做每一题的可能性均为$\frac{1}{2}$.
(Ⅰ)求其中甲乙2位选手选做同一道题的概率.
(Ⅱ)设这5位选手中选做第1题的人数为X,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案