8£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¶¥µãΪA£¬É϶¥µãΪB£¬Ö±ÏßABµÄбÂÊΪ$\frac{\sqrt{6}}{6}$£¬×ø±êÔ­µãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{\sqrt{42}}{7}$£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèÔ²O£ºx2+y2=b2µÄÇÐÏßlÓëÍÖÔ²C½»ÓÚµãP£¬Q£¬Ïß¶ÎPQµÄÖеãΪM£¬ÇóÖ±ÏßlµÄ·½³Ì£¬Ê¹µÃlÓëÖ±Ïß0MµÄ¼Ð½Ç´ïµ½×îС£®

·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃA£¨-a£¬0£©£¬B£¨0£¬b£©£¬ÇóµÃABµÄбÂʺͷ½³Ì£¬ÔËÓõ㵽ֱÏߵľàÀ빫ʽ½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÌÖÂÛµ±Ö±ÏßlµÄбÂʲ»´æÔÚºÍΪ0£¬²»Îª0£¬Éè³öÖ±ÏßlµÄ·½³ÌΪy=kx+t£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨1+6k2£©x2+12ktx+6t2-6=0£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÓÉÁ½Ö±Ïߵļнǹ«Ê½£¬½áºÏ»ù±¾²»µÈʽ£¬¿ÉµÃ×îСֵ£¬ÓÉÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬½ø¶øµÃµ½Ö±Ïß·½³Ì£®

½â´ð ½â£º£¨I£©ÓÉÌâÒâ¿ÉµÃA£¨-a£¬0£©£¬B£¨0£¬b£©£¬
kAB=$\frac{b}{a}$=$\frac{\sqrt{6}}{6}$£¬
Ö±ÏßABµÄ·½³ÌΪy=$\frac{\sqrt{6}}{6}$x+b£¬
ÓÉÌâÒâ¿ÉµÃ$\frac{b}{\sqrt{1+\frac{1}{6}}}$=$\frac{\sqrt{42}}{7}$£¬
½âµÃb=1£¬a=$\sqrt{6}$£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{6}$+y2=1£»
£¨¢ò£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬¼´ÓÐOM¡Íl£¬¼Ð½ÇΪ90¡ã£»
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬²»·ûºÏÌâÒ⣻
ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+t£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ
£¨1+6k2£©x2+12ktx+6t2-6=0£¬
¿ÉµÃx1+x2=-$\frac{12kt}{1+6{k}^{2}}$£¬
¿ÉµÃÖеãM£¨-$\frac{6kt}{1+6{k}^{2}}$£¬$\frac{t}{1+6{k}^{2}}$£©£¬
ÓÖÖ±ÏßlÓëÔ²x2+y2=1ÏàÇУ¬¿ÉµÃ
$\frac{|t|}{\sqrt{1+{k}^{2}}}$=1£¬¼´1+k2=t2£¬
¿ÉµÃOMµÄбÂÊΪk'=-$\frac{1}{6k}$£¬
Ö±ÏßlºÍOMµÄ¼Ð½ÇµÄÕýÇÐΪ¡¢$\frac{-\frac{1}{6k}-k}{1-\frac{1}{6k}•k}$|=$\frac{6}{5}$|-k-$\frac{1}{6k}$|£¬
µ±k£¼0ʱ£¬-k-$\frac{1}{6k}$¡Ý2$\sqrt{£¨-k£©•£¨-\frac{1}{6k}£©}$=$\frac{\sqrt{6}}{3}$£¬
µ±k=-$\frac{\sqrt{6}}{6}$ʱ£¬¼Ð½ÇÈ¡µÃ×îСֵ£®
ÇóµÃt2=$\frac{7}{6}$£¬½âµÃt=¡À$\frac{\sqrt{42}}{6}$£¬
¿ÉµÃÖ±ÏßlµÄ·½³ÌΪy¨T-$\frac{\sqrt{6}}{6}$x¡À$\frac{\sqrt{42}}{6}$£¬
µ±k£¾0ʱ£¬¿ÉµÃk=$\frac{\sqrt{6}}{6}$ʱ£¬¼Ð½ÇÈ¡µÃ×îСֵ£®
ÇóµÃt2=$\frac{7}{6}$£¬½âµÃt=¡À$\frac{\sqrt{42}}{6}$£¬
¿ÉµÃÖ±ÏßlµÄ·½³ÌΪy¨T¡À$\frac{\sqrt{6}}{6}$x¡À$\frac{\sqrt{42}}{6}$£¬
ʹµÃlÓëÖ±Ïß0MµÄ¼Ð½Ç´ïµ½×îС£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÖ±ÏßµÄбÂʹ«Ê½ºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁ½Ö±Ï߼нǵÄ×îÖµµÄÇ󷨣¬×¢ÒâÔËÓüнǹ«Ê½£¬Í¬Ê±¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¸´ÊýzÂú×㣨z-1£©£¨1+i£©=2i£¬Ôò|z|=£¨¡¡¡¡£©
A£®1B£®2C£®$\sqrt{5}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÈçͼËùʾµÄÁ÷³Ìͼ£¬ÈôÊä³öµÄxµÄֵΪ$\frac{¦Ð}{3}$£¬ÔòÏàÓ¦Êä³öµÄyֵΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ËıßÐÎABCDÊÇÕý·½ÐΣ¬DE¡ÍÆ½ÃæABE£¬BE=3DE£¬DE=3£¬AB¡ÍAE£®
£¨I£©ÇóÖ¤£ºAB¡ÍÃæADE£»
£¨¢ò£©Çó¶þÃæ½ÇA-BC-EµÄÆ½Ãæ½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¡÷ABCÖУ¬ÒÑÖªa¡¢b¡¢c·Ö±ðÊǽÇA¡¢B¡¢CµÄ¶Ô±ß£¬ÇÒÂú×ã$\frac{cosA}{cosC}$=-$\frac{a}{2b+c}$£®
£¨1£©Çó½ÇAµÄ´óС£»
£¨2£©Èôa=2£¬Çób+cµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èô$\overrightarrow{a}$=£¨$\frac{7}{2}$£¬$\frac{1}{2}$£©£¬$\overrightarrow{b}$=£¨$\frac{1}{2}$£¬$\frac{7}{2}$£©£¬Óë$\overrightarrow{a}$£¬$\overrightarrow{b}$¼Ð½ÇÏàµÈÄ£³¤Îª1µÄÏòÁ¿Îª£¨$\frac{\sqrt{2}}{2}$£¬$\frac{\sqrt{2}}{2}$£©»ò£¨-$\frac{\sqrt{2}}{2}$£¬-$\frac{\sqrt{2}}{2}$£©£¨ÓÃ×ø±ê±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÕýÕûÊý¼¯{1£¬2£¬3£¬4£¬5£¬¡­}ÖеÄÔªËØÊÇ·ñ±Èƽ·½Êý¼¯{1£¬4£¬9£¬16£¬25£¬¡­}ÖеÄÔªËØ¶à£¿Ò»Ñù¶à£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈçͼÊÇÒ»¸öÕý·½ÌåÖ½ºÐµÄÕ¹¿ªÍ¼£¬°Ñ¸´Êý1£¬-1£¬2i£¬-2i£¬$\sqrt{2}$£¬-$\sqrt{2}$°´ÐéÏß·Ö±ðÌîÈëÁù¸öÕý·½ÕÛ³ÉÕý·½Ìåºó£¬Ïà¶ÔÃæÉϵÄÁ½¸öÊýµÄÄ£ÏàµÈ£¬Ôò²»Í¬µÄÌî·¨ÓÐ48ÖÖ£¨ÓÃÊý×Ö×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ä³µ¥Î»ÓÐ496ÃûÖ°¹¤£¬ÆäÖÐÇàÄêÈËÓÐ271Ãû£¬ÖÐÄêÈËÓÐ178Ãû£¬ÀÏÄêÈËÓÐ47Ãû£¬ÎªÁËÁ˽â¸Ãµ¥Î»Ö°¹¤ÉíÌå×´¿ö£¬³éȡһ¸öÈÝÁ¿ÎªnµÄÑù±¾½øÐÐͳ¼Æ·ÖÎö£¬Èç±íÊǸù¾Ý³éÈ¡µÄÑù±¾Êý¾Ý£¨¾ùΪÕûÊý£¬µ¥Î»£º·Ö£©ÖÆ×÷µÄƵÂÊ·Ö²¼±í£º
£¨1£©²ÉÓ÷ֲã³éÑù£¬ÔÚÇàÄêÈË¡¢ÖÐÄêÈ˺ÍÀÏÄêÈËÖÐÓ¦¸÷³éÈ¡¶àÉÙÈË£¿
£¨2£©ÊÔ¸ù¾Ý±íÖÐÊý¾ÝÍê³ÉƵÂÊ·Ö²¼±í£¨Ö±½ÓÌîдÔÚÔÚ±í¸ñÖУ©£»
£¨3£©ÈôÊý¾ÝÔÚÇø¼ä[59.5£¬74.5£©µÄÖ°¹¤µÄÉíÌå´¦ÓÚÑǽ¡¿µ×´Ì¬£¬ÊÔÎʸõ¥Î»Ô¼ÓжàÉÙÃûÖ°¹¤´¦ÓÚÑǽ¡¿µ×´Ì¬£¿
ƵÂÊ·Ö²¼±í
·Ö×鯵Êý ÆµÂÊ 
 £¨49.5£¬59.5£©12  0.24 
 £¨59.5£¬69.5£©160.32
 £¨69.5£¬79.5£©10 
 £¨79.5£¬89.5£©  0.16
 £¨89.5£¬99.5£©  
 ºÏ¼Æ 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸