精英家教网 > 高中数学 > 题目详情
4.箱中装有标号分别为1,2,3,4,5,6的六个球(除标号外完全相同),从箱中一次摸出两个球,记下号码并放回,若两球的号码之积是4的倍数,则获奖.现有4人参与摸球,恰好有3人获奖的概率是(  )
A.$\frac{624}{625}$B.$\frac{96}{625}$C.$\frac{16}{625}$D.$\frac{4}{625}$

分析 先确定摸一次中奖的概率,4个人摸奖,相当于发生4次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.

解答 解:从6个球中摸出2个,共有C62=15种结果,
两个球的号码之积是4的倍数,共有(1,4)(3,4),(2,4)(2,6)(4,5)(4,6),
∴摸一次中奖的概率是$\frac{6}{15}$=$\frac{2}{5}$,
4个人摸奖,相当于发生4次试验,且每一次发生的概率是$\frac{2}{5}$,
∴有4人参与摸奖,恰好有3人获奖的概率是${C}_{4}^{3}$•${(\frac{2}{5})}^{3}$•$\frac{3}{5}$=$\frac{96}{625}$,
故选:B.

点评 本题考点是n次独立重复试验中恰好发生k次的概率,考查独立重复试验的概率,解题时主要是看清摸奖4次,相当于做了4次独立重复试验,利用公式做出结果,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.利用独立性检验来考虑高血压与患心脏病是否有关时,经计算,K2的观测值为8.3 则有(  )
(参考值:P(K2≥10.828)≈0.001,P(K2≥6.635)≈0.010)
A.有99%以上的把握认为“高血压与患心脏病无关”
B.有99%以上的把握认为“高血压与患心脏病有关”
C.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”
D.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{2{e}^{x-3},x<3}\\{lo{g}_{3}({x}^{2}-6),x≥3}\end{array}\right.$,则f(f(3))=$\frac{2}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆的极坐标方程为ρ2+2ρ(cos θ+$\sqrt{3}$sin θ)=5,则此圆在直线θ=0上截得的弦长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点,G是C上一点,且满足$\frac{|G{F}_{1}|}{|G{F}_{2}|}$=9 则C的离心率的取值范围是(  )
A.(1,$\frac{\sqrt{5}}{2}$)B.(1,$\frac{\sqrt{5}}{2}$]C.(1,$\frac{5}{4}$)D.(1,$\frac{5}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,在扇形AOB中,∠AOB=$\frac{π}{3}$,圆C内切于扇形AOB,若随机在扇形AOB内投一点,则该点落在圆C外的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a>0且a≠1,函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-1<x<1,则函数f(x)的最大值与最小值之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.侧棱长为2的正三棱柱,若其底面周长为9,则该正三棱柱的表面积是(  )
A.$\frac{{9\sqrt{3}}}{2}$B.$16+\frac{{9\sqrt{3}}}{2}$C.$18+\frac{{9\sqrt{3}}}{2}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.正项等比数列{an}中,a4•a5=32,则log2a1+log2a2+…+log2a8的值为(  )
A.10B.20C.36D.128

查看答案和解析>>

同步练习册答案