分析 (Ⅰ)利用诱导公式化简求值即可得解.
(Ⅱ)结合三角函数值的符合判断即可得解.
解答 解:(Ⅰ)f(θ)=$\frac{sin(θ-\frac{π}{2})cos(\frac{3π}{2}+θ)tan(π-θ)}{tan(-π-θ)sin(-π-θ)}$=$\frac{cosθsinθ(-tanθ)}{(-tanθ)sinθ}$=cosθ,
g(θ)=$\frac{sin(2π-θ)cos(π+θ)cos(\frac{π}{2}+θ)cos(\frac{11π}{2}-θ)}{cos(π-θ)sin(3π-θ)sin(-π-θ)sin(\frac{9π}{2}+θ)}$=$\frac{(-sinθ)(-cosθ)(-sinθ)(-sinθ)}{(-cosθ)sinθsinθcosθ}$=-tanθ.
(Ⅱ)解:∵f(θ)=cosθ>0,
∴θ在第一象限或第四象限,
∵g(θ)=-tanθ<0,可得tanθ>0,
∴θ在第一象限或第三象限,
综上:θ在第一象限.
点评 本题主要考查了诱导公式在三角函数化简求值中的应用,由三角函数值的符号判断角的终边位置,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 年龄(岁) | [20,30] | [30,40] | [40,60] |
| 人数 | 70 | 90 | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+i | B. | 1-i | C. | $\frac{1}{2}$+$\frac{1}{2}$i | D. | $\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com