精英家教网 > 高中数学 > 题目详情

【题目】已知在直角坐标系xOy中,P(1,1),Ax,0)(x>0),B(0,y)(y>0)

(Ⅰ)若x=,求y的值;

(Ⅱ)若OAB的周长为2,求向量的夹角.

【答案】(Ⅰ) (Ⅱ)

【解析】

(Ⅰ)分别求得A,的坐标,由向量垂直的条件:数量积为0,解方程可得y的值

(Ⅱ)由题意可得x+y+=2,移项平方,计算向量的数量积,以及模的乘积,再由向量夹角公式,即可得到所求角.

解:()若x=P(1,1),A,0),B(0,y)(y>0),

可得=(-1,y-1),=(-y),

,可得=+y2-y=0,

解得y=

(Ⅱ)若OAB的周长为2,

即为x+y+=2,

即有2-x-y=

平方可得4-4x-4y+2xy=0,

1-x-y=-xy

=(x-1,-1),=(-1,y-1),

=1-x+1-y=2-x-y=

||||=

=

=

=

==

cos<>==

0≤<>≤π,

可得向量的夹角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为

(1)求函数的解析式;

(2)若经过点可以作出曲线的三条切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>b>1,0<c<1,则(  )
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=fx)的周期为2,当x∈[0,2]时,fx)=(x-1)2,如果gx)=fx)-log5x,则函数y=gx)的零点个数为(  )

A. 1 B. 3 C. 5 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(2sinx,-1),=(sinx,3),若函数fx)=

(Ⅰ)求函数fx)的最小正周期;

(Ⅱ)求函数fx)的最大值及取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个判断:

①若fx)=x2-2ax[1,+∞)上增函数,则a=1;

②函数fx)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;

④在同一坐标系中函数y=2xy=2-x的图象关于y轴对称.

其中正确命题的序号是(  )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

时,若上为减函数,上是增函数,求值;

对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(  )
(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年
B.2019年
C.2020年
D.2021年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为

查看答案和解析>>

同步练习册答案