【题目】已知在直角坐标系xOy中,P(1,1),A(x,0)(x>0),B(0,y)(y>0)
(Ⅰ)若x=,⊥,求y的值;
(Ⅱ)若△OAB的周长为2,求向量与的夹角.
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)分别求得A,,的坐标,由向量垂直的条件:数量积为0,解方程可得y的值;
(Ⅱ)由题意可得x+y+=2,移项平方,计算向量与的数量积,以及模的乘积,再由向量夹角公式,即可得到所求角.
解:(Ⅰ)若x=,P(1,1),A(,0),B(0,y)(y>0),
可得=(-1,y-1),=(-,y),
由⊥,可得=+y2-y=0,
解得y=;
(Ⅱ)若△OAB的周长为2,
即为x+y+=2,
即有2-x-y=,
平方可得4-4x-4y+2xy=0,
即1-x-y=-xy,
又=(x-1,-1),=(-1,y-1),
=1-x+1-y=2-x-y=,
||||=
=
=
=
==,
则cos<,>==,
由0≤<,>≤π,
可得向量与的夹角为.
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x-1)2,如果g(x)=f(x)-log5x,则函数y=g(x)的零点个数为( )
A. 1 B. 3 C. 5 D. 7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量=(2sinx,-1),=(sinx,3),若函数f(x)=.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的最大值及取得最大值时x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列4个判断:
①若f(x)=x2-2ax在[1,+∞)上增函数,则a=1;
②函数f(x)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;
④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.
其中正确命题的序号是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )
(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年
B.2019年
C.2020年
D.2021年
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com