| A. | 4+$\frac{\sqrt{3}}{2}$ | B. | 7 | C. | 6 | D. | 4+2$\sqrt{3}$ |
分析 先求出抛物线的标准方程,得焦点F的坐标,再设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|进而把问题转化为求|PA|+|PD|取得最小,进而可推断出当D,P,A三点共线时|PA|+|PD|最小,答案可得.
解答 解:由题意,|MF|的最小值为2,
∴$\frac{p}{2}$=2,
∴p=4,
∴抛物线E:y2=8x,
抛物线y2=8x的焦点F的坐标是(2,0 );
设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小,
当D,P,A三点共线时|PA|+|PD|最小,为4-(-2)=6,
故选:C.
点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,P,A三点共线时|PA|+|PD|最小,是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n+10 | B. | n+8 | C. | 2n+10 | D. | 2n+8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 在犯错误的概率不超过0.1%的前提下,认为“爱好打篮球与性别无关” | |
| B. | 在犯错误的概率不超过0.1%的前提下,认为“爱好打篮球与性别有关” | |
| C. | 有99%以上的把握认为“爱好打篮球与性别无关” | |
| D. | 有99%以上的把握认为“爱好打篮球与性别有关” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $4\sqrt{2}$ | C. | $4\sqrt{3}$ | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com