分析 求出直线x+y=2与x、y轴的交点A,B,进而得到中点C的坐标,将C的坐标代入抛物线y2=2px求出p进而可得到焦点坐标,再由点到线的距离公式看得到答案.
解答 解:由已知可得A(2,0),B(0,2),C(1,1),
解得抛物线方程为y2=x,
于是焦点F($\frac{1}{4}$,0),
焦点F到直线AB的距离d=$\frac{丨\frac{1}{4}-2丨}{\sqrt{{1}^{2}+{1}^{2}}}$=$\frac{7\sqrt{2}}{8}$,
焦点F到直线AB的距离$\frac{7\sqrt{2}}{8}$.
点评 本题主要考查了抛物线方程,以及点到直线的距离公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | (0-1) | C. | (-$\frac{1}{8}$,0) | D. | (0,-$\frac{1}{8}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4+$\frac{\sqrt{3}}{2}$ | B. | 7 | C. | 6 | D. | 4+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆锥的侧面展开图是一个等腰三角形 | |
| B. | 棱柱的两个底面全等且其余各面都是矩形 | |
| C. | 任何一个棱台的侧棱必交于同一点 | |
| D. | 过圆台侧面上一点有无数条母线 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com