精英家教网 > 高中数学 > 题目详情
8.我们把一系列向量$\overrightarrow{a_i}$(i=1,2,3,…,n)按次序排成一列,称之为向量列,记作$\left\{{\overrightarrow{a{\;}_n}}\right\}$,已知向量列$\left\{{\overrightarrow{a{\;}_n}}\right\}$满足:$\overrightarrow{a_1}$=(1,1),$\overrightarrow{a_n}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1)(n≥2).
(1)证明:数列$\left\{{|{\overrightarrow{a_n}}|}\right\}$是等比数列;
(2)设θn表示向量$\overrightarrow{a_n}$与$\overrightarrow{{a_{n-1}}}$间的夹角,若bn=$\frac{n^2}{π}{θ_n}$,对于任意正整数n,不等式$\sqrt{\frac{1}{{{b_{n+1}}}}}$+$\sqrt{\frac{1}{{{b_{n+2}}}}}$+…+$\sqrt{\frac{1}{{{b_{2n}}}}}$>a(a+2)恒成立,求实数a的范围.

分析 (1)利用向量模的坐标公式求出|$\overrightarrow{{a}_{n}}$|的模,得到|$\overrightarrow{{a}_{n}}$|与|$\overrightarrow{{a}_{n-1}}$|的关系,利用等比数列的定义能证明数列$\left\{{|{\overrightarrow{a_n}}|}\right\}$是等比数列.
(2)利用向量的坐标形式的数量积公式求出$\overrightarrow{{a}_{n-1}}$,$\overrightarrow{{a}_{n}}$的数量积,利用向量的模、夹角形式的数量积公式求出夹角的余弦,从而得到bn=$\frac{n^2}{π}{θ_n}$=$\frac{{n}^{2}}{4}$,由此能求出结果.

解答 证明:(1)∵向量列$\left\{{\overrightarrow{a{\;}_n}}\right\}$满足:$\overrightarrow{a_1}$=(1,1),
$\overrightarrow{a_n}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1),
∴|$\overrightarrow{{a}_{n}}$|=$\frac{1}{2}\sqrt{({x}_{n-1}-{y}_{n-1})^{2}-({x}_{n-1}+{y}_{n-1})^{2}}$
=$\frac{\sqrt{2}}{2}$$\sqrt{{{x}_{n-1}}^{2}+{{y}_{n-1}}^{2}}$
=$\frac{\sqrt{2}}{2}$|$\overrightarrow{{a}_{n-1}}$|,
∴数列$\left\{{|{\overrightarrow{a_n}}|}\right\}$是等比数列.
解:(2)∵θn表示向量$\overrightarrow{a_n}$与$\overrightarrow{{a_{n-1}}}$间的夹角,
∴cosQn=$\frac{\overrightarrow{{a}_{n-1}}•\overrightarrow{{a}_{n}}}{|\overrightarrow{{a}_{n-1}}|•|\overrightarrow{{a}_{n}}|}$=$\frac{({x}_{n-1},{y}_{n-1})•\frac{1}{2}({x}_{n-1}-{y}_{n-1},{x}_{n-1}+{y}_{n-1})}{\frac{\sqrt{2}}{2}|\overrightarrow{{a}_{n-1}}{|}^{2}}$
=$\frac{\frac{1}{2}({{x}_{n-1}}^{2}+{{y}_{n-1}}^{2})}{\frac{\sqrt{2}}{2}({{x}_{n-1}}^{2}+{{y}_{n-1}}^{2})}$=$\frac{\sqrt{2}}{2}$,
∴Qn=$\frac{π}{4}$,bn=$\frac{n^2}{π}{θ_n}$=$\frac{{n}^{2}}{4}$,
∴$\sqrt{\frac{1}{{{b_{n+1}}}}}$+$\sqrt{\frac{1}{{{b_{n+2}}}}}$+…+$\sqrt{\frac{1}{{{b_{2n}}}}}$=$\frac{2}{n+1}+\frac{2}{n+2}+…+\frac{2}{2n}$,
记f(n)=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,
则f(n+1)-f(n)=$\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}$=$\frac{1}{2n+1}-\frac{1}{2n+2}$=$\frac{1}{(2n+1)(2n+2)}$>0,
∴f(n)随n单调增加,
∴f(n)>m对于一切大于1的自然数n都成立等价于m<f(2)=$\frac{1}{3}+\frac{1}{4}$=$\frac{7}{12}$,
∵对于任意正整数n,不等式$\sqrt{\frac{1}{{{b_{n+1}}}}}$+$\sqrt{\frac{1}{{{b_{n+2}}}}}$+…+$\sqrt{\frac{1}{{{b_{2n}}}}}$=$\frac{2}{n+1}+\frac{2}{n+2}+…+\frac{2}{2n}$>a(a+2)恒成立,
∴a(a+2)<2f(2)=$\frac{7}{6}$,
解得-1-$\frac{\sqrt{78}}{6}$<a<-1+$\frac{\sqrt{78}}{6}$,
∴实数a的范围是(-1-$\frac{\sqrt{78}}{6}$,-1+$\frac{\sqrt{78}}{6}$).

点评 解决向量的夹角问题一般利用向量的数量积公式求出夹角余弦,再利用夹角范围求出夹角;求数列的前n项和问题,应该先求出数列的通项,据通项的特点选择求和方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若将(x+y+z)10展开为多项式,经过合并同类项后它的项数为(  )
A.11B.33C.66D.91

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=-x3+2ax2-x-3在R上是单调函数,则实数a的取值范围是(  )
A.(-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞)B.[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]C.(-∞,-$\frac{\sqrt{3}}{2}$]∪($\frac{\sqrt{3}}{2}$,+∞)D.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在非零实数集上的函数f(x)满足:f(xy)=f(x)+f(y),且f(x)在区间(0,+∞)上为递增函数.
(1)求f(1)、f(-1)的值;
(2)求证:f(x)是偶函数;
(3)解不等式:f(2)+f(x-1)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点A(1,2)关于直线m:x-y-1=0的对称点是(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)的导函数f′(x)在区间(a,b)内的图象如图所示,则f(x)在(a,b)内的极大值点有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知一个球的表面积为π,则其体积为(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,sinA<sin B,则(  )
A.a<bB.a>b
C.a≤bD.a,b的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知以C1为圆心的圆C1:(x-6)2+(y-7)2=25.及其上一点A(2,4).
(1)设圆C2与x轴相切,与圆C1外切,且圆心C2在直线x=6上,求圆C2的标准方程;
(2)设平行于OA的直线l与圆C1相交于B,C两点,且|BC|=|OA|,求直线l的方程.

查看答案和解析>>

同步练习册答案