【题目】指出下列各组集合之间的关系:
(1);
(2);
(3);
(4),或;
(5),.
【答案】(1);(2);(3);(4);(5).
【解析】
(1)中集合用不等式表示,可以根据范围直接判断; (2)根据集合表示数集的意义进行判断;
(3)解集合中方程得到集合,再根据集合中分别为奇数、偶数得到集合B进行判断;(4)可以根据集合元素的特征或者集合的几何意义判断;
(5)将中x关于的关系式,改写成中的形式再进行判断.
(1)集合B中的元素都在集合A中,但集合A中有些元素(比如0,)不在集合B中,故.
(2)∵A是偶数集,B是4的倍数集,∴.
(3).
在B中,当n为奇数时,,
当n为偶数时,,
∴,∴.
(4(方法一)由得或;
由或得,从而.
(方法二)集合A中的元素是平面直角坐标系中第一、三象限内的点,集合B中的元素也是平面直角坐标系中第一、三象限内的点,
从而.
(5)对于任意,有.
∵,∴,
∴.
由子集的定义知,.
设,此时,解得.
∵在时无解,
∴.
综上所述,.
科目:高中数学 来源: 题型:
【题目】一次数学会议中,有五位教师来自三所学校,其中学校有位,学校有位,学校有位。现在五位老师排成一排照相,若要求来自同一学校的老师不相邻,则共有_______种不同的站队方法.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若实数满足,则称比接近
(1)若4比接近0,求的取值范围;
(2)对于任意的两个不等正数,求证:比接近;
(3)若对于任意的非零实数,实数比接近,求的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.直线过点.
(1)若直线与曲线交于两点,求的值;
(2)求曲线的内接矩形的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(a∈R).
(1)若曲线y=f(x)在x=e处切线的斜率为﹣1,求此切线方程;
(2)若f(x)有两个极值点x1,x2,求a的取值范围,并证明:x1x2>x1+x2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:“若,则关于x的不等式的解集为空集”,那么它的逆命题,否命题,逆否命题,以及原命题中,假命题的个数是( )
A.0B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com