精英家教网 > 高中数学 > 题目详情
9.已知集合M={(a,b)|a≤一1,且b≤m},其中m∈R.
(1)若f(a,b)=$\frac{b-1}{a-1}$的最小值为-1,求实数m的值;
(2)若任意(a,b)∈M,均有a•2b-b-3a≥0,求实数m的最大值.

分析 (1)由题意,在(-1,m)处,f(a,b)=$\frac{b-1}{a-1}$的最小值为-1,即可求出m的值;
(2)设f(a)=a(2b-3)-b,由题意可得,2b-3<0,且f(-1)≥0恒成立,再由g(x)=x+2x在R上递增,且g(1)=3,解不等式求交集即可.

解答 解:(1)由题意,在(-1,m)处,f(a,b)=$\frac{b-1}{a-1}$的最小值为-1,
∴$\frac{m-1}{-1-1}$=-1,
∴m=3;
(2)设f(a)=a(2b-3)-b,
由于任意的实数a≤-1,恒有a•2b-b-3a≥0成立,
则2b-3<0,且f(-1)≥0恒成立,
则有b<log23,且3-b-2b≥0,
由b+2b≤3,又g(x)=x+2x在R上递增,且g(1)=3,
则g(b)≤g(1),解得b≤1.
又b<log23,则有b≤1,
∴实数m的最大值为1.

点评 本题考查函数恒成立问题,考查构造函数运用单调性解题,考查不等式的解法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.二次函数f(x)=ax2+4x-3的最大值为5,则f(3)=(  )
A.2B.-2C.$\frac{9}{2}$D.$-\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x|x-a|+b,a,b∈R
(I)当a>0时,讨论函数f(x)的零点个数;
(Ⅱ)若对于给定的实数a(-$\frac{1}{3}$≤a<0),存在实数b,使不等式f(x)≤x+$\frac{1}{2}$对于任意x∈[2a-1,2a+1]恒成立.试将最大实数b表示为关于a的函数m(a),并求m(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知A{x|y=x2-2x-3},B={y|y=-x2-2x+3},则A∩B=(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y∈R满足下列关系式:f(x•y)=xf(y)+yf(x),且f(2)=2.
(1)求f(0),f(1)的值;
(2)证明:f(x)为奇函数;
(3)证明:$\frac{f({2}^{n})}{{2}^{n}}$-$\frac{f({2}^{n-1})}{{2}^{n-1}}$=1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,点E是平行四边形ABCD的对角线BD的n(n∈N且n≥2)等分点中最靠近点D的点,线段AE的延长线交CD于点F,若$\overrightarrow{AF}$=x$\overrightarrow{AB}$+$\overrightarrow{AD}$,则x=$\frac{1}{n-1}$.(用含有n的代数式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知变量x,y满足线性约束条件$\left\{\begin{array}{l}{y≥a(x-3)}\\{x+y≤3}\\{x≥1}\end{array}\right.$其中a>0,当z=2x+y的最小值为1时,a等于(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数的图象C′与C:y=$\frac{ax+{a}^{2}+1}{x+a+1}$关于直线y=x对称,且图象C′关于点(2,-3)对称,则实数a的值为(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在(-∞,0)∪(0,+∞)上的函数f(x)在(0,+∞)上为增函数,对定义域内的任意实数x,y都有f(xy)=f(x)+f(y),且f(2)=1,
(Ⅰ)求f(1),f(-1)的值;
(Ⅱ)试判断函数f(x)的奇偶性,并给出证明;
(Ⅲ)如果f(2-x)≥2,求x的取值范围.

查看答案和解析>>

同步练习册答案