精英家教网 > 高中数学 > 题目详情
19.若函数y=f(x)满足,存在x0≠0,x0≠$\frac{1}{x_0}$,使$f({x_0})=f(\frac{1}{x_0})=0$,则x0叫做函数y=f(x)的“基点”,已知函数f(x)=x3+ax2+bx+1存在“基点”,则a2+(b-2)2的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[8,+∞)D.[10,+∞)

分析 根据“基点”的定义建立方程关系得到a=b,然后利用一元二次函数的性质进行求解即可.

解答 解:设x0是函数f(x)=x3+ax2+bx+1的“基点”,
则满足x03+ax02+bx0+1=0且($\frac{1}{{x}_{0}}$)3+a($\frac{1}{{x}_{0}}$)2+b•$\frac{1}{{x}_{0}}$+1=0,
整理得x03+bx02+ax0+1=0,
则两个方程为同解方程,即a=b,
则a2+(b-2)2=a2+(a-2)2=2(a-1)2+2≥2,
即a2+(b-2)2的取值范围是[2,+∞),
故选:A

点评 本题主要考查函数和方程的应用,根据同解求出a=b是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知点F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),曲线r上任意一点P满足|PF1|+|PF2|=4,抛物线x2=2py,(p>0).
(1)若抛物线的焦点在曲线r上,求曲线r的标准方程和抛物线标准方程;
(2)设抛物线的焦点是F(0,$\frac{1}{2}$),在抛物线上是否存在点M,使得以点M为切点的切线与曲线r相交于A,B两点,且以AB为直径的圆过坐标原点O?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等差数列{an}的前n项和为Sn,且a1>0,若存在自然数m≥3,使得am=Sm,当n>m时,Sn与an的大小关系为:Sn<an.(填“>”;“<”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a=1”是“直线l:y=kx+a与圆C:x2-2x+y2=0相交”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业有甲、乙两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.
从甲、乙两个分厂生产的零件中各抽出500件,量其内径尺寸的结果如下表:
甲厂的零件内径尺寸:
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数1530125198773520
乙厂的零件内径尺寸:
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数407079162595535
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有99.9%的把握认为“生产的零件是否为优质品与在不同分厂生产有关”;
甲厂   乙厂  合计
优质品
非优质品
合计
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
 P(K2≥k0 0.100 0.050     0.010      0.025     0.001
 k 2.706     3.841     5.024      6.635     10.828
(Ⅱ)现用分层抽样方法(按优质品和非优质品分两层)从乙厂中抽取5件零件,求从这5件零件中任意取出2件,至少有1件非优质品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,A=60°,若a,b,c成等比数列,则$\frac{bsinB}{c}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆的方程是x2+y2+2(m-1)x-4my+5m2-2m-8=0.
(1)求此圆的圆心和半径;
(2)求证:不论m为何实数,它们表示圆心在同一条直线上的等圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)-2x]=3,则f(3)=(  )
A.1B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列判断中正确的是(  )
A.命题“若a-b=1,则a2+b2>$\frac{1}{2}$”是真命题
B.“a=b=$\frac{1}{2}$”是“$\frac{1}{a}+\frac{1}{b}$=4”的必要不充分条件
C.若非空集合A,B,C满足A∪B=C,且B不是A的子集,则“x∈C”是“x∈A”的充分不必要条件
D.命题“?x0∈R,x02+1≤2x0”的否定是“?x∈R,x2+1>2x”

查看答案和解析>>

同步练习册答案