精英家教网 > 高中数学 > 题目详情
4.在△ABC中,A=60°,若a,b,c成等比数列,则$\frac{bsinB}{c}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

分析 由等比中项的性质列出式子,结合条件和正弦定理求出a的表达式,代入式子化简即可求出$\frac{bsinB}{c}$的值.

解答 解:∵a,b,c成等比数列,∴b2=ac,①
又A=60°,则由正弦定理得:$\frac{a}{sinA}$=$\frac{b}{sinB}$,
即a=$\frac{bsinA}{sinB}$,代入①得,${b}^{2}=\frac{cbsinA}{sinB}$,则$b=\frac{csinA}{sinB}$,
所以$\frac{bsinB}{c}$=sinA=sin60°=$\frac{\sqrt{3}}{2}$,
故选:B.

点评 本题考查了正弦定理,以及等比中项的性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.一个所有棱长均为$\sqrt{2}$的正三棱锥(底面是正三角形,顶点在底面的射影是底面的中心)的顶点与底面的三个顶点均在某个球的球面上,则此球的体积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$,则向量$\vec a$与$\vec b$夹角的余弦值为(  )
A.$\frac{{\sqrt{3}}}{6}$B.-$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=10,an=$\left\{\begin{array}{l}{{2}^{{a}_{n-1}},n=2k}\\{-1+lo{g}_{2}{a}_{n-1},n=2k+1}\end{array}\right.$(k∈N*),其前n项和为Sn
(1)求数列{an}的通项公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数y=f(x)满足,存在x0≠0,x0≠$\frac{1}{x_0}$,使$f({x_0})=f(\frac{1}{x_0})=0$,则x0叫做函数y=f(x)的“基点”,已知函数f(x)=x3+ax2+bx+1存在“基点”,则a2+(b-2)2的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[8,+∞)D.[10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则a,b的值为(  )
A.$\left\{\begin{array}{l}{a=3}\\{b=-3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$B.$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$
C.$\left\{\begin{array}{l}{a=-1}\\{b=5}\end{array}\right.$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a、b、c分别为△ABC三个内角A、B、C的对边,a=$\sqrt{3}$bsinA-acosB,则角B=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在下列给出的命题中,所有正确命题的序号为①②③.
①函数y=2x3+3x-1的图象关于点(0,1)成中心对称;
②对?x,y∈R.若x+y≠0,则x≠1或y≠-1;
③若实数x,y满足x2+y2=1,则$\frac{y}{x+2}$的最大值为$\frac{{\sqrt{3}}}{3}$;
④若△ABC为锐角三角形,则sinA<cosB.
⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且$\overrightarrow{OG}$•$\overrightarrow{BC}$=5,则△ABC的形状是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线C:y2=4x,过定点(2,0)作垂直于x轴的直线交抛物线于点M、N,若P为抛物线C上不同于M、N的任意一点,若直线PM、PN的斜率都存在并记为k1、k2,则|$\frac{1}{k_1}-\frac{1}{k_2}$|=(  )
A.2B.1C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案