精英家教网 > 高中数学 > 题目详情
16.已知a、b、c分别为△ABC三个内角A、B、C的对边,a=$\sqrt{3}$bsinA-acosB,则角B=60°.

分析 利用正弦定理把已知的等式化边为角,由两角和与差的正弦函数公式化简,结合特殊角的三角函数值即可求得B的值.

解答 解:由a=$\sqrt{3}$bsinA-acosB,
由正弦定理得:$\sqrt{3}$sinBsinA-sinAcosB-sinA=0,
∵sinA≠0,
∴$\sqrt{3}$sinB-cosB=1.
即sin(B-30°)=$\frac{1}{2}$.
∵0°<B<180°,
∴-30°<B-30°<150°,
∴B-30°=30°,
故答案为:60°.

点评 本题考查了解三角形,训练了正弦定理的应用,考查了三角函数的两角和与差的正弦函数公式,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系中,O为坐标原点,A(1,0),B(0,-$\sqrt{3}$),点D是圆C:(x+1)2+y2=1上的动点,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|的最大值为(  )
A.2B.$\sqrt{3}$+1C.$\sqrt{3}$+$\sqrt{2}$D.$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a=1”是“直线l:y=kx+a与圆C:x2-2x+y2=0相交”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,A=60°,若a,b,c成等比数列,则$\frac{bsinB}{c}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆的方程是x2+y2+2(m-1)x-4my+5m2-2m-8=0.
(1)求此圆的圆心和半径;
(2)求证:不论m为何实数,它们表示圆心在同一条直线上的等圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(-2,-1),离心率为$\frac{\sqrt{2}}{2}$.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明:直线PQ的斜率为定值,并求这个定值;
(Ⅲ)∠PMQ能否为直角?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)-2x]=3,则f(3)=(  )
A.1B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,长方体ABCD-A1B1C1D1的AA1=1,底面ABCD的周长为4.
(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;
(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;
(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.

查看答案和解析>>

同步练习册答案