6£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨sin¦È+cos¦È£©=1£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌÓëÇúÏßC2µÄÆÕͨ·½³Ì£»
£¨¢ò£©ÊÔÅжÏÇúÏßC1ÓëC2ÊÇ·ñ´æÔÚÁ½¸ö½»µã£¿Èô´æÔÚ£¬Çó³öÁ½½»µã¼äµÄ¾àÀ룻Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£© ÓÉÌõ¼þ¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½ÇóµÃÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£»°ÑÇúÏßC2µÄ²ÎÊý·½³ÌÖеIJÎÊýÏûÈ¥£¬×ª»¯ÎªÆÕͨ·½³Ì£®
£¨¢ò£©°ÑÇúÏßC1ÓëC2ÊÇÁªÁ¢·½³Ì×é¸ù¾ÝÅбðʽ´óÓÚÁã¿ÉµÃÇúÏßC1ÓëC2ÊÇÏཻÓÚÁ½¸öµã£»Çó³ö·½³Ì×éµÄ½â£¬¿ÉµÃÁ½¸ö½»µãµÄ×ø±ê£¬´Ó¶øÇóµÃÁ½½»µã¼äµÄ¾àÀ룮

½â´ð ½â£º£¨¢ñ£©ÓÉÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨sin¦È+cos¦È£©=1£¬¿ÉµÃËüµÄÖ±½Ç×ø±ê·½³ÌΪx+y=1£¬
¸ù¾ÝÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¿ÉµÃËüµÄÆÕͨ·½³ÌΪ $\frac{{x}^{2}}{4}$+y2=1£®
£¨¢ò£©°ÑÇúÏßC1ÓëC2ÊÇÁªÁ¢·½³Ì×é $\left\{\begin{array}{l}{x+y=1}\\{\frac{{x}^{2}}{4}{+y}^{2}=1}\end{array}\right.$£¬»¯¼ò¿ÉµÃ 5x2-8x=0£¬ÏÔÈ»¡÷=64£¾0£¬
¹ÊÇúÏßC1ÓëC2ÊÇÏཻÓÚÁ½¸öµã£®
½â·½³Ì×éÇóµÃ$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$£¬»ò $\left\{\begin{array}{l}{x=\frac{8}{5}}\\{y=-\frac{3}{5}}\end{array}\right.$£¬¿ÉµÃÕâ2¸ö½»µãµÄ×ø±ê·Ö±ðΪ£¨0£¬1£©¡¢£¨$\frac{8}{5}$£¬-$\frac{3}{5}$£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬°Ñ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌµÄ·½·¨£¬ÇóÁ½ÌõÇúÏߵĽ»µã£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªa¡¢b¡¢c·Ö±ðΪ¡÷ABCÈý¸öÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß£¬a=$\sqrt{3}$bsinA-acosB£¬Ôò½ÇB=60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®º¯Êýy=f£¨x£©£¬£¨x¡ÊR£©ÎªÆæº¯Êý£¬µ±x¡Ê£¨-¡Þ£¬0£©Ê±£¬xf¡ä£¨x£©£¼f£¨-x£©£¬Èô a=$\sqrt{3}$•f£¨$\sqrt{3}$£©£¬b=£¨lg3£©•f£¨lg3£©£¬c=£¨log2$\frac{1}{4}$£©•f£¨log2$\frac{1}{4}$£©£¬Ôòa£¬b£¬cµÄ´óС˳ÐòΪ£¨¡¡¡¡£©
A£®a£¼b£¼cB£®c£¾b£¾aC£®c£¼a£¼bD£®c£¾a£¾b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÅ×ÎïÏßC£ºy2=4x£¬¹ý¶¨µã£¨2£¬0£©×÷´¹Ö±ÓÚxÖáµÄÖ±Ïß½»Å×ÎïÏßÓÚµãM¡¢N£¬ÈôPΪÅ×ÎïÏßCÉϲ»Í¬ÓÚM¡¢NµÄÈÎÒâÒ»µã£¬ÈôÖ±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ²¢¼ÇΪk1¡¢k2£¬Ôò|$\frac{1}{k_1}-\frac{1}{k_2}$|=£¨¡¡¡¡£©
A£®2B£®1C£®$\sqrt{2}$D£®$2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{1-|x-1|£¬x¡Ê[0£¬2]}\\{\frac{1}{2}f£¨x-2£©£¬x¡Ê£¨2£¬+¡Þ£©}\end{array}\right.$£¬Èôx£¾0£¬f£¨x£©¡Ü$\frac{k-1}{x}$ºã³ÉÁ¢£¬ÔòkµÄȡֵ·¶Î§[$\frac{5}{2}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚËÄÀâÖùABCD-A1B1C1D1ÖУ¬AB=BC=CA=$\sqrt{3}$£¬AD=CD=AA1=1£¬Æ½ÃæAA1C1C¡ÍÆ½ÃæABCD£¬EΪÏß¶ÎBCµÄÖе㣬
£¨¢ñ£©ÇóÖ¤£ºBD¡ÍAA1£»
£¨¢ò£©ÇóÖ¤£ºA1E¡ÎÆ½ÃæDCC1D1
£¨¢ó£© ÈôAA1¡ÍAC£¬ÇóA1EÓëÃæACC1A1Ëù³É½Ç´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Óá°³ä·ÖÌõ¼þ¡±¡°±ØÒªÌõ¼þ¡±»ò¡°³äÒªÌõ¼þ¡±Ìî¿Õ£º
£¨1£©x¡ÊAÊÇx¡ÊA¡ÈBµÄ³ä·ÖÌõ¼þ£»
£¨2£©a£¬bÎªÆæÊýÊÇa+bΪżÊýµÄ³ä·ÖÌõ¼þ£»
£¨3£©A=∅ÊÇA¡ÉB=∅µÄ³ä·ÖÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÓÉÈô¸É¸öÀⳤΪ1µÄÕý·½Ìå×é³ÉµÄ¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}|x+1|£¬-7¡Üx¡Ü0\\ 1nx£¬{e^{-2}}¡Üx¡Üe\end{array}$£¬g£¨x£©=x2-2x£¬ÉèaΪʵÊý£¬Èô´æÔÚʵÊým£¬Ê¹f£¨m£©-2g£¨a£©=0£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[-1£¬+¡Þ£©B£®£¨-¡Þ£¬-1]¡È[3£¬+¡Þ£©C£®[-1£¬3]D£®£¨-¡Þ£¬3]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸