【题目】函数
,当
时,
恒成立,则
的最大值是_____.
【答案】![]()
【解析】
先根据恒成立写出有关a,b的约束条件,再在aob系中画出可行域,由斜率模型可得
.又
,令
t,则1≤t≤4,利用y=t
在[1,4]上单调递增,即可得出结论.
令g(m)=(3a﹣2)m+b﹣a.
由题意当m∈[0,1]时,0≤f(a)≤1可得
0≤g(0)≤1,
0≤g(1)≤1,
∴0≤b﹣a≤1,0≤2a+b﹣2≤1.
即 a≤b≤1+a①,2≤2a+b≤3 ②.
把(a,b)看作点画出可行域,由斜率模型
可看作是原点与(a,b)连线的斜率,由图可得当(a,b)取点A时,原点与(a,b)连线的斜率最大,与b﹣a=0重合时原点与(a,b)连线的斜率最小.
∴1
4.
又
,令
t,则1≤t≤4,
∵y=t
在[1,4]上单调递增,
∴t=4时,即a
,b
时,y有最大值是
.
则
的最大值是![]()
故答案为: ![]()
![]()
科目:高中数学 来源: 题型:
【题目】如图1,在等腰
中,
,
,
分别为
,
的中点,
为
的中点,
在线段
上,且
。将
沿
折起,使点
到
的位置(如图2所示),且
。
![]()
(1)证明:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成
,
,
,
,
,
,
组,得到如图所示的频率分布直方图.若尺寸落在区间
之外,则认为该零件属“不合格”的零件,其中
,
分别为样本平均和样本标准差,计算可得
(同一组中的数据用该组区间的中点值作代表).
![]()
(1)若一个零件的尺寸是
,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前
组中抽出
个零件,标上记号,并从这
个零件中再抽取
个,求再次抽取的
个零件中恰有
个尺寸小于
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
:![]()
的焦距为2,且过点
.
(1)求椭圆
的方程;
(2)设椭圆
的上顶点为
,右焦点为
,直线
与椭圆交于
,
两点,问是否存在直线
,使得
为
的垂心,若存在,求出直线
的方程:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为丰富教职工生活,在元旦期间举办趣味投篮比赛,设置A,B两个投篮位置,在A点投中一球得1分,在B点投中一球得2分,规则是:每人按先A后B的顺序各投篮一次(计为投篮两次),教师甲在A点和B点投中的概率分别为
和
,且在A,B两点投中与否相互独立.
(1)若教师甲投篮两次,求教师甲投篮得分0分的概率
(2)若教师乙与教师甲在A,B投中的概率相同,两人按规则投篮两次,求甲得分比乙高的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
),点
为椭圆短轴的上端点,
为椭圆上异于
点的任一点,若
点到
点距离的最大值仅在
点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”,已知
.
(1)若
,判断椭圆
是否为“圆椭圆”;
(2)若椭圆
是“圆椭圆”,求
的取值范围;
(3)若椭圆
是“圆椭圆”,且
取最大值,
为
关于原点
的对称点,
也异于
点,直线
、
分别与
轴交于
、
两点,试问以线段
为直径的圆是否过定点?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的极坐标方程,并求出曲线
与
公共弦所在直线的极坐标方程;
(2)若射线
与曲线
交于
两点,与曲线
交于
点,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD为正方形,
平面ABCD,
,
,
.
![]()
(1)求证:
平面PAD;
(2)在棱AB上是否存在一点F,使得平面
平面PCE?如果存在,求
的值;如果不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com