精英家教网 > 高中数学 > 题目详情
1.执行如图所示的程序框图,若输入t的值为6,则输出的s的值为(  )
A.$\frac{9}{16}$B.$\frac{5}{4}$C.$\frac{21}{16}$D.$\frac{11}{8}$

分析 模拟执行程序框图,依次写出每次循环得到的k,s,即可得出结论.

解答 解:依题意,当输入t的值是6时,执行题中的程序框图,
k=2,s=1+$\frac{1}{2}$,
k=3,s=1+$\frac{1}{2}$-$\frac{1}{{2}^{2}}$,
k=4,s=1+$\frac{1}{2}$-$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$,
k=5,s=1+$\frac{1}{2}$-$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$-$\frac{1}{{2}^{4}}$,
k=6≥6,此时结束循环,输出的s=1+$\frac{1}{2}$-$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$-$\frac{1}{{2}^{4}}$=$\frac{21}{16}$,
故选C.

点评 本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的k,s的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\frac{x^3}{cosx}$的定义域为$({-\frac{π}{2},\frac{π}{2}})$,当$|{x_i}|<\frac{π}{2}$(i=1,2,3)时,若x1+x2>0,x2+x3>0,x1+x3>0,则有f(x1)+f(x2)+f(x3)的值(  )
A.恒小于零B.恒等于零
C.恒大于零D.可能大于零,也可能小于零

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是AB边的中点,现把△ACP沿CP折成如图2所示的三棱锥A-BCP,使得AB=$\sqrt{10}$.
(1)求证:平面ACP⊥平面BCP;
(2)求二面角B-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A、B、C的坐标分别是(4,0),(0,4),(3cosα,3sinα),且$α∈({\frac{π}{2},\frac{3π}{4}})$.若$\overrightarrow{AC}⊥\overrightarrow{BC}$,求$\frac{{2{{sin}^2}α-sin2α}}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={-2,0,2,3},B={-1,0,1,2},则A∩B=(  )
A.{0,1}B.{0,2}C.{1,3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.方程$({1-x})sinπx=\frac{1}{2}({-2≤x≤4})$的所有解之和等于(  )
A.0B.4C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α是第二象限角,则π+α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$+4$\overrightarrow{b}$=0,则(  )
A.|$\overrightarrow{a}$|+4|$\overrightarrow{b}$|=0B.$\overrightarrow{a}$与$\overrightarrow{b}$是相反向量C.$\overrightarrow{a}$与$\overrightarrow{b}$的方向相同D.$\overrightarrow{a}$与$\overrightarrow{b}$的方向相反

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\frac{1}{2}{x^2}-2ax-alnx$对区间(1,2)上任意x1,x2(x1≠x2),都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<0$,则a的取值范围为(  )
A.$({\frac{4}{5},+∞})$B.$[{\frac{4}{5},+∞})$C.$[{\frac{1}{3},+∞})$D.(-∞,1)∪(0,+∞)

查看答案和解析>>

同步练习册答案