| A. | $({\frac{4}{5},+∞})$ | B. | $[{\frac{4}{5},+∞})$ | C. | $[{\frac{1}{3},+∞})$ | D. | (-∞,1)∪(0,+∞) |
分析 由题意可得f′(x)≤0在x∈(1,2)上恒成立,即x2-2ax-a≤0成立,令g(x)=x2-2ax-a,得到关于a的不等式组,即可得出结论.
解答 解:f′(x)=x-2a-$\frac{a}{x}$,
∴f′(x)≤0在x∈(1,2)上恒成立,
即x-2a-$\frac{a}{x}$≤0,在x∈(1,2)上恒成立,
即x2-2ax-a≤0,
令g(x)=x2-2ax-a,
则$\left\{\begin{array}{l}{g(1)≤0}\\{g(2)≤0}\end{array}\right.$,即 $\left\{\begin{array}{l}{1-3a≤0}\\{4-5a≤0}\end{array}\right.$,
解得a≥$\frac{4}{5}$,
故选:B.
点评 本题考查学生利用导数研究函数的单调性知识及转化划归思想的运用能力,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{16}$ | B. | $\frac{5}{4}$ | C. | $\frac{21}{16}$ | D. | $\frac{11}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{4}$ | B. | -4 | C. | 3 | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com