精英家教网 > 高中数学 > 题目详情
6.已知tanα=2,求$\frac{2sinα-2cosα}{4sinα-9cosα}$的值为-2.

分析 根据同角三角函数求得sinα=2cosα,代入求值即可.

解答 解:∵tanα=2,
∴$\frac{sinα}{cosα}$=2,则sinα=2cosα,
∴$\frac{2sinα-2cosα}{4sinα-9cosα}$=$\frac{4cosα-2cosα}{8cosα-9cosα}$=-2,
故答案是:-2.

点评 本题主要考察了同角三角函数关系式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若集合A={-2,0,2,3},B={-1,0,1,2},则A∩B=(  )
A.{0,1}B.{0,2}C.{1,3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若$α∈({0,\frac{π}{3}})$,则${3^{|{lo{g_3}({sinα})}|}}$=$\frac{1}{sinα}$(写出化简的最后结果).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=2,F为线段DE的中点.
(1)求证:BE∥平面ACF
(2)求异面直线AD与CF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数y=2$\sqrt{3}sinxcosx+8si{n}^{2}x+2co{s}^{2}$x,
(1)求函数y的最小值及取得最小值时x的集合;
(2)求函数y的对称轴.对称中心;
(3)求函数y的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\frac{1}{2}{x^2}-2ax-alnx$对区间(1,2)上任意x1,x2(x1≠x2),都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<0$,则a的取值范围为(  )
A.$({\frac{4}{5},+∞})$B.$[{\frac{4}{5},+∞})$C.$[{\frac{1}{3},+∞})$D.(-∞,1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛
(1)求应从这三个协会中分别抽取的运动员的人数;
(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛,设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
(1)求回归直线方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline{y}$-b$\overline{x}$;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
回归直线的斜率和截距的最小二乘估计公式分别为$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在R上的单调区间
(3)求y=f(x)在[-3,1]上的最大值.

查看答案和解析>>

同步练习册答案