精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在R上的单调区间
(3)求y=f(x)在[-3,1]上的最大值.

分析 (1)求出f(x)的导数,可得曲线在x=1处切线的斜率,运用已知切线的方程,可得切线的斜率和切点坐标,解方程可得a,b的值;
(2)求出f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间;
(3)求出f(x)的极值和区间[-3,1]处的函数值,比较即可得到所求最大值.

解答 解:(1)函数f(x)=x3+ax2+bx+5的导数为f′(x)=3x2+2ax+b,
曲线y=f(x)在点P(1,f(1))处的切线斜率为k=3+2a+b,
切点为(1,6+a+b),
由切线方程为y=3x+1,可得3+2a+b=3,6+a+b=4,
解得a=2,b=-4;
(2)函数f(x)=x3+2x2-4x+5的导数为f′(x)=3x2+4x-4=(x+2)(3x-2),
由f′(x)>0,可得x>$\frac{2}{3}$或x<-2;由f′(x)<0,可得-2<x<$\frac{2}{3}$.
则f(x)的增区间为(-∞,-2),($\frac{2}{3}$,+∞);减区间为(-2,$\frac{2}{3}$);
(3)由(2)可得f(x)的两极值点-2,$\frac{2}{3}$,
f(-2)=-8+8+8+5=13,f($\frac{2}{3}$)=$\frac{8}{27}$+$\frac{8}{9}$-$\frac{8}{3}$+5=$\frac{95}{27}$,
又f(-3)=-27+18+12+5=8,f(1)=1+2-4+5=4.
故y=f(x)在[-3,1]上的最大值为13.

点评 本题考查导数的运用:求切线的斜率和单调区间、最值,考查方程思想的运用,以及化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知tanα=2,求$\frac{2sinα-2cosα}{4sinα-9cosα}$的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个物体的位移s(米)和与时间t(秒)的关系为s=4-2t+t2,则该物体在3秒末的瞬时速度是4米/秒.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(-2,4),求$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知方程t2+4at+3a+1=0(a>1)的两根均tanα,tanβ,其中α,β∈(-$\frac{π}{2},\frac{π}{2}$)且x=α+β
(1)求tanx的值;
(2)求$\frac{cos2x}{\sqrt{2}cos(\frac{π}{4}+x)sinx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果复数(m2+i)(1+m)是实数,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ex+2cosx,则曲线y=f(x)在点(0,f(0))处的切线方程x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f1(x)=sinx+cosx,记f2(x)=f1'(x),…,fn+1(x)=fn'(x),…,则${f_1}(\frac{π}{3})+{f_2}(\frac{π}{3})+{f_3}(\frac{π}{3})+…+{f_{2017}}(\frac{π}{3})$=$\frac{{1+\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥P-ABC的四个顶点均在半径为2的球面上,且PA、PB、PC两两互相垂直,则三棱锥P-ABC的侧面积的最大值为8.

查看答案和解析>>

同步练习册答案