精英家教网 > 高中数学 > 题目详情
7.一个物体的位移s(米)和与时间t(秒)的关系为s=4-2t+t2,则该物体在3秒末的瞬时速度是4米/秒.

分析 此类运动问题中瞬时速度问题的研究一般借助函数的导数求其某一时刻的瞬时速度,解答本题可以先求s=4-2t+t2的导数,再求得t=3秒时的导数,即可得到所求的瞬时速度.

解答 解:∵一个物体的位移s(米)和与时间t(秒)的关系为s=4-2t+t2
∴s′=2t-2
∴该物体在3秒末的瞬时速度是s′|x=3=2×3-2=4米/秒,
故答案为4米/秒.

点评 本题主要考查了变化的快慢与变化率,正确解答本题关键是理解导数的物理意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若$α∈({0,\frac{π}{3}})$,则${3^{|{lo{g_3}({sinα})}|}}$=$\frac{1}{sinα}$(写出化简的最后结果).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛
(1)求应从这三个协会中分别抽取的运动员的人数;
(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛,设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
(1)求回归直线方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline{y}$-b$\overline{x}$;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
回归直线的斜率和截距的最小二乘估计公式分别为$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax-ex(a∈R),g(x)=$\frac{lnx}{x}$
(1)讨论函数y=f(x)的单调性;
(2)?x0∈(0,+∞),使不等式f(x0)≤g(x0)-ex0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$x={5^{{{log}_2}3.4}}$,$y={5^{{{log}_4}3.6}}$,$z={(\frac{1}{5})^{{{log}_3}0.3}}$,则x,y,z大小关系为(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.由直线x=$\frac{1}{3}$,x=3,曲线y=$\frac{1}{x}$及x轴所围图形的面积是2ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在R上的单调区间
(3)求y=f(x)在[-3,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数$z=\frac{16i}{{\sqrt{7}+3i}}$,则下列说法错误的是(  )
A.复数z的实部为3B.复数z的虚部为$\sqrt{7}$
C.复数z的模为4D.复数z的共轭复数为$-3+\sqrt{7}i$

查看答案和解析>>

同步练习册答案