精英家教网 > 高中数学 > 题目详情
9.如图,四棱锥S-ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(Ⅰ)求证:SB=SD;
(Ⅱ)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

分析 (Ⅰ)根据线面垂直以及线段的垂直平分线的性质证明即可;
(Ⅱ)由线线平行面面平行从而推出线面平行即可.

解答 证明:如图示:
(Ⅰ)设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,
又已知SC⊥BD,SC⊥CO=C,所以BD⊥平面SOC,
所以BD⊥SO,即SO是BD的垂直平分线,所以SB=SD,
(Ⅱ)取AB中点N,连接DM,MN,DN,
∵M是SA的中点,∴MN∥BE,
∵△ABD是正三解形,∴DN⊥AB,
∵∠BCD=120°得∠CBD=30°,∴∠ABC=90°,即BC⊥AB,
所以ND∥BC,所以平面MND∥平面BSC,
故DM∥平面SBC.

点评 本题考查了线面、面面、线线平行的判定定理,考查看图能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角 A,B,C所对的边分别为a,b,c,已知$b=\sqrt{3}a$.
(1)当$C=\frac{π}{6}$,且△ABC的面积为$\sqrt{3}$时,求a的值;
(2)当$cosC=\frac{{\sqrt{3}}}{3}$时,求sin( B-A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.线性回归直线y=a+bx必过定点($\overline{x}$,$\overline{y}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=log2x+2x-6的零点一定位于下列哪个区间(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=ax3+x2+x有极值的充要条件是a<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y (吨)的4组对应数据:
x2457
y1.5t4.25.5
若通过上表的4组数据,得到y关于x的线性回归方程为$\stackrel{∧}{y}$=0.7x+0.35,那么表中t的值应为2.8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{x+a}{{e}^{x}}$(a∈R,其中e≈2.71828…),记f′(x)为函数f(x)的导函数.
(Ⅰ)若曲线y=f(x)在x=0处的切线与直线x+y=0平行,求a的值;
(Ⅱ)求函数f(x)在[-2,+∞)上的最大值;
(Ⅲ)若a=-1,令an=f′(n),n∈N+,证明:-252<a1+a2+a3+…+a2018<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,已知A=30°,C=45°a=20,求B及b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(sin$\frac{π}{8}$,cos$\frac{π}{8}$ ),则sin(2α-$\frac{π}{12}$)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案