精英家教网 > 高中数学 > 题目详情
4.函数f(x)=ax3+x2+x有极值的充要条件是a<$\frac{1}{3}$.

分析 若a≠0,三次函数f(x)=ax3+x2+x有极值,f′(x)=0有不相等的两个解,利用判别式即可求得结论,若a=0,函数为二次函数可知有极值.

解答 解:求得导函数f′(x)=3ax2+2x+1,
若a≠0,三次函数f(x)有极值,则f′(x)=0有不相等的两个解,
∴△=4-12a>0,∴a<$\frac{1}{3}$,
若a=0,导函数f′(x)=3ax2+2x+1=2x+1
令f′(x)>0,则x>-$\frac{1}{2}$;令f′(x)<0,则x<-$\frac{1}{2}$;
∴函数在x=-$\frac{1}{2}$处取得极小值.
综上得,a<$\frac{1}{3}$
故答案为:a<$\frac{1}{3}$.

点评 本题主要考查了函数的导数与极值的关系,以及充要条件的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.A,B两人下棋,A获胜的概率为30%,两人下成和棋的概率为20%,那么A不输的概率为0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是某三棱锥的三视图,则该三棱锥的表面积为(  )
A.4+$\sqrt{7}+\sqrt{3}$B.6+$\sqrt{7}$C.4+$\sqrt{7}$D.6+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且8Sn=(an+2)2,bn=$\frac{1}{2}$anλn-1(λ>0,λ∈R).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn
(3)若不等式(1-λ)Tn+λbn≥2λn对任意的n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x、y应为15,12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥S-ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(Ⅰ)求证:SB=SD;
(Ⅱ)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=2\sqrt{5}+t}\end{array}\right.$(t为参数),在极坐标系中(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴),曲线C1的极坐标方程为ρ=2.
(Ⅰ)判断直线l与曲线C1的位置关系;
(Ⅱ)已知曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),且M,N分别为曲线C2的上下顶点,点P为曲线C1上任意一点,试判断|PM|2+|PN|2是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,$\frac{π}{2}$]
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算:$\underset{lim}{x→1}$($\frac{1}{{x}^{2}-3x+2}$-$\frac{2}{{x}^{2}-4x+3}$)=$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案