精英家教网 > 高中数学 > 题目详情
16.(1)已知复数z=3+ai(a∈R)且|z|<4,求实数a的取值范围.
(2)记复数z的共轭复数记作$\overline z$,已知$({1+2i})\overline z=4+3i$,求z.

分析 (1)利用复数模的计算公式即可得出.
(2)利用复数的运算法则、共轭复数的定义即可得出.

解答 解:(1)复数z=3+ai(a∈R)且|z|<4,∴$\sqrt{{3}^{2}+{a}^{2}}$<4,解得$-\sqrt{7}<a<\sqrt{7}$.
∴实数a的取值范围$(-\sqrt{7},\sqrt{7})$.
(2)∵$({1+2i})\overline z=4+3i$,∴(1-2i)(1+2i)$\overline{z}$=(4+3i)(1-2i),∴5$\overline{z}$=10-5i,$\overline{z}$=2-i.
∴z=2+i.

点评 本题考查了复数的运算法则、共轭复数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,直三棱柱ABC-A1B1C1中,D,E,F分别为棱AB,BC,A1C1的中点.证明:
(1)EF∥平面A1CD;
(2)若AB=BC=AC=AA1=1,求V${\;}_{{A}_{1}-ABC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\frac{tan(α-γ)}{tanα}$+$\frac{si{n}^{2}β}{si{n}^{2}α}$=1,求证:tan2β=tanαtanγ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.曲线y=ex在点A(0,1)处的切线斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x>0,y>0,且x+8y-xy=0.
(1)当x,y分别为何值时,xy取得最小值?
(2)当x,y分别为何值时,x+y取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列n∈N*,n≥2的前n项和Sn=n2+2n-1(n∈N*),则a1=2;数列{an}的通项公式为an=$\left\{\begin{array}{l}2,n=1\\ 2n+1,n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果△ABC内接于单位圆,且$({a^2}-{c^2})=(\sqrt{2}a-b)b$,则△ABC面积的最大值为$\frac{{\sqrt{2}+1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如果关于x的不等式2kx2+kx-$\frac{3}{8}$<0对一切实数x都成立,那么k的取值范围是(-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列命题中真命题的序号为(1).
(1)命题“?x>0,x2-x≤0”的否定是“?x>0,x2-x>0.”
(2)若A>B,则sinA>sinB.
(3)已知数列{an},则“an,an+1,an+2成等比数列”是“$a_{n+1}^2={a_n}{a_{n+2}}$”的充要条件
(4)已知函数$f(x)=lgx+\frac{1}{lgx}$,则函数f(x)的最小值为2.

查看答案和解析>>

同步练习册答案