精英家教网 > 高中数学 > 题目详情
1.方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{4y=1+sin2θ}\end{array}}\right.$(θ为参数)所表示曲线的准线方程是y=-1.

分析 消去参数,得到普通方程,即可得出结论.

解答 解:第一个方程平方可得x2=1+sin2θ,
∴x2=4y,
∴准线方程是y=-1,
∴方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{4y=1+sin2θ}\end{array}}\right.$(θ为参数)所表示曲线的准线方程是y=-1.
故答案为y=-1.

点评 本题考查了直角坐标方程化为参数方程、抛物线的方程与性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在整数集Z中,被5所除得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4;给出四个结论:
(1)2015∈[0];(2)-3∈[3];(3)Z=[0]∪[1]∪[2]∪[3]∪[4];(4)“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:4x+ay-5=0与直线l′:x-2y=0相互垂直,圆C的圆心与点(2,1)关于直线l对称,且圆C过点M(-1,-1).
(1)求直线l与圆C的方程;
(2)已知N(2,0),过点M作两条直线分别与圆C交于P,Q两点,若直线MP,MQ的斜率满足kMP+kMQ=0,求证:直线PQ的斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是(  )
A.a<-1B.a>-1C.a>-$\frac{1}{e}$D.a<-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.$(θ为参数)所表示曲线的准线方程是$y=-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线l:y=kx+1与抛物线y2=4x恰有一个公共点,则实数k的值为(  )
A.0B.1C.-1或0D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线l的极坐标方程为2ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,点A的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$),则点A到直线l的距离为(  )
A.$\frac{5}{3}\sqrt{3}$B.$\frac{5}{2}\sqrt{3}$C.$\frac{5}{3}\sqrt{2}$D.$\frac{5}{2}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{2{x}^{3}-a{x}^{2}-1,x<0}\\{|x-3|+a,x≥0}\end{array}\right.$恰有两个零点,则a的取值范围是(-3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式-x2+4x-4<0的解集为(  )
A.RB.ΦC.(-∞,2)∪(2,+∞)D.{2}

查看答案和解析>>

同步练习册答案