精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=x|m-x|(x∈R),f(4)=0.
(Ⅰ)求m的值,并指出函数f(x)的单调区间;
(Ⅱ)若方程f(x)=a只有一个实根,求a的取值范围.

分析 (Ⅰ)将x=4代入f(x)的解析式,解方程可得a的值;由绝对值的意义,讨论x的范围,运用二次函数的性质,可得单调区间;
(Ⅱ)作出f(x)的图象,考虑直线y=a与曲线有一个交点情况,即可得到所求a的范围.

解答 解:(Ⅰ)函数f(x)=x|m-x|,且f(4)=0.
得4|m-4|=0,解得m=4;                   
故f(x)=x|4-x|,
当x≥4时,f(x)=x2-4x=(x-2)2-4,
对称轴x=2在区间[4,+∞)的左边,
f(x)在[4,+∞)递增;
当x<4时,f(x)=x(4-x)=-(x-2)2+4,
可得f(x)在(-∞,2)递增;在(2,4)递减.
综上可得f(x)的递增区间为(-∞,2),(4,+∞);
递减区间(2,4);
(Ⅱ)画出函数f(x)的图象,如图所示:

由f(x)的图象可知,
当a<0或a>4时,
f(x)的图象与直线y=a只有一个交点,
方程f(x)=a只有一个实根,
即a的取值范围是(-∞,0)∪(4,+∞).

点评 本题考查分段函数的运用:求单调区间,考查函数方程的转化思想,以及分类讨论的思想方法,注意数形结合的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)=3|x-m|+m(m为实数)为偶函数,又a=log25,b=${log}_{\frac{1}{2}}$4,c=3m,则下列大小关系正确的是(  )
A.f(a)>f(b)>f(c)B.f(a)>f(c)>f(b)C.f(c)>f(a)>f(b)D.f(c)>f(b)>f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等比数列{an}中,a1=4,且a1,a2,a3-1成等差数列,公比q>1,则an等于(  )
A.4•3n-1B.4•($\frac{3}{2}$)n-1C.4nD.4•($\frac{5}{2}$)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“b<1”是“函数f(x)=x2-2bx,x∈[1,+∞)有反函数”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点 O(0,0),A(2,1),B(-2,4),向量$\overrightarrow{OM}$=$\overrightarrow{OA}$+λ$\overrightarrow{OB}$.
(I )若点M在第二象限,求实数λ的取值范围
(II)若λ=1,判断四边形OAMB的形状,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M满足{1,2}⊆M⊆{1,2,3,4},则集合M的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正项等差数列{an}的前n(n∈N*)项和为Sn,a3=3,且λSn=anan+1,在正项等比数列{bn}中,b1=2λ,b3=a15+1.
(1)求数列{an}及{bn}的通项公式;
(2)设数列{cn}的前n(n∈N*)项和为Tn,且cn=$\left\{\begin{array}{l}{{a}_{n}+1,n为正奇数}\\{{b}_{n},n为正偶数}\end{array}\right.$,求不等式T2n<n2+n+480的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取男生人数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案