精英家教网 > 高中数学 > 题目详情
(2013•房山区一模)直线x-y-2=0与圆x2+y2-2x=1相交于A,B两点,则线段AB的长等于
6
6
分析:利用圆的方程确定其圆心与半径,求得圆心到直线的距离,再由勾股定理确定相应的弦长.
解答:解:整理圆x2+y2-2x=1的方程为(x-1)2+y2=2
∴圆心坐标是(1,0),半径是
2

∴圆心到直线x-y-2=0的距离为
|1-2|
2
=
2
2

|AB|=2
(
2
)2-(
2
2
)2
=
6

故答案为:
6
点评:本题主要考查了直线与圆相交的性质.考查了学生数形结合的数学思想的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•房山区一模)设集合M是R的子集,如果点x0∈R满足:?a>0,?x∈M,0<|x-x0|<a,称x0为集合M的聚点.则下列集合中以1为聚点的有(  )
{
n
n+1
|n∈N}
;    
{
2
n
|n∈N*}
;    
③Z;    
④{y|y=2x}.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知函数f(x)=
1
2
x2-alnx-
1
2
(a∈R,a≠0)

(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知全集U=R,集合M={x|x≤1},N={x|x2>4},则M∩(?RN)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)执行如图所示的程序框图.若输出S=15,则框图中①处可以填入(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD=
12
AD=1
,PA=PD,E,F为AD,PC的中点.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)若PC与AB所成角为45°,求PE的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值.

查看答案和解析>>

同步练习册答案