【题目】求下列椭圆的标准方程:
(1)焦点在
轴上,离心率
,且经过点
;
(2)以坐标轴为对称轴,且长轴长是短轴长的
倍,并且过点
.
【答案】(1)
;(2)
或
.
【解析】
(1)由焦点在
轴上,可设椭圆的标准方程为
,将点A代入方程,由离心率与椭圆的系数关系整理得方程,由上述两个方程解得
,代入所设方程得答案;
(2)分类讨论焦点在
轴与
轴,利用待定系数法设出方程,代入点坐标可得方程,由已知长轴长是短轴长的
倍又可构建方程,联立方程组求得所设方程系数,既得答案.
(1)因为焦点在
轴上,即设椭圆的标准方程为
,
∵椭圆经过点
,
.①,
由已知
,即
.②,
把②代入①,得
,解得
,
∴椭圆的标准方程为
.
(2)若焦点在
轴上,设方程为![]()
因为椭圆过点
,所以
,又
,![]()
椭圆的标准方程为
,
若焦点在
轴上,设方程为
因为椭圆过点
,,所以
,又
,
∴椭圆的方程为![]()
综上,所求的椭圆方程是
或![]()
科目:高中数学 来源: 题型:
【题目】已知某企业生产某种产品的年固定成本为200万元,且每生产1吨该产品需另投入12万元,现假设该企业在一年内共生产该产品
吨并全部销售完.每吨的销售收入为
万元,且
.
(1)求该企业年总利润
(万元)关于年产量
(吨)的函数关系式;
(2)当年产量为多少吨时,该企业在这一产品的生产中所获年总利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右顶点为
,
为上顶点,点
为椭圆
上一动点.
(1)若
,求直线
与
轴的交点坐标;
(2)设
为椭圆
的右焦点,过点
与
轴垂直的直线为
,
的中点为
,过点
作直线
的垂线,垂足为
,求证:直线
与直线
的交点在椭圆
上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】勒洛三角形是具有类似圆的“定宽性”的曲线,它是由德国机械工程专家、机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.如图中的两个勒洛三角形,它们所对应的等边三角形的边长比为
,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 |
|
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某市12月1日-20日AQI指数变化趋势:
![]()
下列叙述正确的是( )
A.这20天中AQI指数值的中位数略高于100
B.这20天中的中度污染及以上的天数占![]()
C.该市12月的前半个月的空气质量越来越好
D.总体来说,该市12月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,点P到两点(0,
),(0,
)的距离之和为4,设点P的轨迹为C,直线y=kx+1与A交于A,B两点.
(1)写出C的方程;
(2)若
,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.下图表展示了2月14日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是( )
![]()
A.16天中每日新增确诊病例数量呈下降趋势且19日的降幅最大
B.16天中每日新增确诊病例的中位数小于新增疑似病例的中位数
C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000
D.19日至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com