精英家教网 > 高中数学 > 题目详情
设球的半径是1,是球面上三点,已知两点的球面距离都是,且二面角的大小是,则从点沿球面经两点再回到点的最短距离是(  )
A.B.
C.D.
选C.
.本题考查球面距离.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,圆锥的顶点是S,底面中心为O.OC是与底面直径AB垂直的一条半径,D是母线SC的中点.
(1)求证:BC与SA不可能垂直.
(2)设圆锥的高为4,异面直线AD与BC所成角的余弦值为,求圆锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。[
(1)求证:AB1//面BDC1
(2)若AA1=3,求二面角C1—BD—C的余弦值;
(3)若在线段AB1上存在点P,使得CP面BDC1,试求AA1的长及点P的位置。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥中,底面为矩形,侧面底面
(Ⅰ)证明:
(Ⅱ)设侧面为等边三角形,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E、F分别为A1D1CC1 的中点.

(1)求证:EF∥平面ACD1
(2)求面EFB与底面ABCD所成的锐二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以一个正方体顶点为顶点的四面体共有(   ).
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,有下列命题:
①若,则;       ②若,则
③若,则;       ④若,则
其中真命题的个数是
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一个球的半径扩大到原来的2倍,则它的体积扩大到原来的(  )倍     (   )
A.2B.4 C.6D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设α、β、γ为彼此不重合的三个平面,ι为直线,给出下列命题:
①若α∥β,α⊥γ,则β⊥γ,
②若α⊥γ,β⊥γ,且αnβ=ι,则ι⊥γ
③若直线l与平面α内的无数条直线垂直则直线ι与平而α垂直,
④若α内存在不共线的三点到β的距离相等.则平面α平行于平面β
上面命题中,真命题的序号为            (写出所有真命题的序号)

查看答案和解析>>

同步练习册答案