精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右顶点为为上顶点,点为椭圆上一动点.

1)若,求直线轴的交点坐标;

2)设为椭圆的右焦点,过点轴垂直的直线为的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.

【答案】12)见解析

【解析】

1)直接求出直线方程,与椭圆方程联立求出点坐标,从而可得直线方程,得其与轴交点坐标;

2)设,则,求出直线的方程,从而求得两直线的交点坐标,证明此交点在椭圆上,即此点坐标适合椭圆方程.代入验证即可.注意分说明.

解:本题考查直线与椭圆的位置关系的综合,

1)由题知,则.因为,所以

则直线的方程为,联立,可得

.则,直线的方程为.令

,故直线轴的交点坐标为

2)证明:因为,所以.设点,则

时,设,则,此时直线轴垂直,

其直线方程为

直线的方程为,即

在方程中,令,得,得交点为,显然在椭圆上.

同理当时,交点也在椭圆上.

时,可设直线的方程为,即

直线的方程为,联立方程

消去,化简并解得

代入中,化简得

所以两直线的交点为

因为

又因为,所以

所以点在椭圆上.

综上所述,直线与直线的交点在椭圆上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩服从正态分布,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:

(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;

(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?

(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为,求的数学期望.

附:若随机变量服从正态分布,则

参考公式与临界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四面体的棱长满足,现将四面体放入一个主视图为等边三角形的圆锥中,使得四面体可以在圆锥中任意转动,则圆锥侧面积的最小值为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆x轴负半轴交于,离心率.

1)求椭圆C的方程;

2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在内现将这100名学生的成绩按照分组后,得到的频率分布直方图如图所示,则下列说法正确的是  

A. 频率分布直方图中a的值为

B. 样本数据低于130分的频率为

C. 总体的中位数保留1位小数估计为

D. 总体分布在的频数一定与总体分布在的频数相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】詹姆斯·哈登(James Harden)是美国NBA当红球星,自2012年10月加盟休斯顿火箭队以来,逐渐成长为球队的领袖.2017-18赛季哈登当选常规赛MVP(最有价值球员).

年份

2012-13

2013-14

2014-15

2015-16

2016-17

2017-18

年份代码t

1

2

3

4

5

6

常规赛场均得分y

25.9

25.4

27.4

29.0

29.1

30.4

(Ⅰ)根据表中数据,求y关于t的线性回归方程*);

(Ⅱ)根据线性回归方程预测哈登在2019-20赛季常规赛场均得分.

(附)对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

(参考数据,计算结果保留小数点后一位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接全国文明城市复检,绵阳某中学组织了本校1000名学生进行社会主义核心价值观、文明常识等内容测试。统计测试成绩数据得到如图所示的频率分布直方图,已知,满分100.

1)求测试分数在的学生人数;

2)求这1000名学生测试成绩的平均数以及中位数.

查看答案和解析>>

同步练习册答案