【题目】国家规定每年的
月
日以后的
天为当年的暑假.某钢琴培训机构对
位钢琴老师暑假一天的授课量进行了统计,如下表所示:
授课量(单位:小时) |
|
|
|
|
|
频数 |
|
|
|
|
|
培训机构专业人员统计近
年该校每年暑假
天的课时量情况如下表:
课时量(单位:天) |
|
|
|
|
|
频数 |
|
|
|
|
|
(同组数据以这组数据的中间值作代表)
(1)估计
位钢琴老师一日的授课量的平均数;
(2)若以(1)中确定的平均数作为上述一天的授课量.已知当地授课价为
元/小时,每天的各类生活成本为
元/天;若不授课,不计成本,请依据往年的统计数据,估计一位钢琴老师
天暑假授课利润不少于
万元的概率.
科目:高中数学 来源: 题型:
【题目】某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.
(1)若该蛋糕店一天生产30个这种面包,求当天的利润y(单位:元)关于当天需求量n(单位:个,
)的函数解析式;
(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得表:
日需求量n | 28 | 29 | 30 | 31 | 32 | 33 |
频数 | 3 | 4 | 6 | 6 | 7 | 4 |
假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差;
(3)蛋糕店规定:若连续10天的日需求量都不超过10个,则立即停止这种面包的生产,现给出连续10天日需求量的统计数据为“平均数为6,方差为2”,试根据该统计数据决策是否一定要停止这种面包的生产?并给出理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知曲线
的极坐标方程为
,以极点
为直角坐标原点,以极轴为
轴的正半轴建立平面直角坐标系
,将曲线
向左平移
个单位长度,再将得到的曲线上的每一个点的横坐标缩短为原来的
,纵坐标保持不变,得到曲线![]()
(1)求曲线
的直角坐标方程;
(2)已知直线
的参数方程为
,(
为参数),点
为曲线
上的动点,求点
到直线
距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过抛物线C的焦点F的直线l交抛物线C于A,B两点,且A,B两点在抛物线C的准线上的投影分别P、Q.
(1)已知
,若
,求直线l的方程;
(2)设P、Q的中点为M,请判断PF与MB的位置关系并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
是空间两条不同的直线,
、
是空间两个不同的平面.给出下列四个命题:
①若
,
,
,则
;
②若
,
,
,则
;
③若
,
,
,则
;
④若
,
,
,
,则
.
其中正确的是__________(填序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育局为了监控某校高一年级的素质教育过程,从该校高一年级16个班随机抽取了16个样本成绩,制表如下:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
测评成绩 | 95 | 96 | 96 | 90 | 95 | 98 | 98 | 97 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
测评成绩 | 97 | 95 | 96 | 98 | 99 | 96 | 99 | 96 |
令
为抽取的第
个学生的素质教育测评成绩,
,经计算得
,
,
,
,以下计算精确到0.01.
(1)求
的相关系数
,并回答
与
是否可以认为具有较强的相关性;
(2)在抽取的样本成绩中,如果出现了在
之外的成绩,就认为本学期的素质教育过程可能出现了异常情况,需对本学期的素质教学过程进行反思,同时对下学期的素质教育过程提出指导性的建议,从该校抽样的结果来看,是否需对本学期的素质教学过程进行反思,同时对下学期的素质教育过程提出指导性的建议?
附:样本
的相关系数
,若
,则可以认为两个变量具有较强的线性相关性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴与短轴比值是2,椭圆C过点
.
(1)求椭圆C的标准方程;
(2)过点
作圆x2+y2=1的切线
交椭圆C于A,B两点,记△AOB(O为坐标原点)的面积为S△AOB,将S△AOB表示为m的函数,并求S△AOB的最大值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com