分析 化简可得(x-1)2+y2=1,从而令x-1=cosa,y=sina,从而利用三角函数求最值.
解答 解:∵x2+y2-2x=0,
∴(x-1)2+y2=1,
令x-1=cosa,y=sina,
则x+y=1+cosa+sina=1+$\sqrt{2}$sin(a+$\frac{π}{4}$),
∵-1≤sin(a+$\frac{π}{4}$)≤1,
∴1-$\sqrt{2}$≤1+$\sqrt{2}$sin(a+$\frac{π}{4}$)≤1+$\sqrt{2}$,
∴x+y的最大值为1+$\sqrt{2}$,最小值为1-$\sqrt{2}$.
点评 本题考查了方程的几何意义的应用及三角函数的应用,同时考查了换元法的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥$\frac{3-\sqrt{5}}{2}$} | B. | {x|x≤$\frac{3+\sqrt{5}}{2}$} | C. | {x|$\frac{3-\sqrt{5}}{2}$≤x≤$\frac{3+\sqrt{5}}{2}$} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 16 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com