精英家教网 > 高中数学 > 题目详情
17.已知实数x,y满足x2+y2-2x=0,求x+y的最大值与最小值.

分析 化简可得(x-1)2+y2=1,从而令x-1=cosa,y=sina,从而利用三角函数求最值.

解答 解:∵x2+y2-2x=0,
∴(x-1)2+y2=1,
令x-1=cosa,y=sina,
则x+y=1+cosa+sina=1+$\sqrt{2}$sin(a+$\frac{π}{4}$),
∵-1≤sin(a+$\frac{π}{4}$)≤1,
∴1-$\sqrt{2}$≤1+$\sqrt{2}$sin(a+$\frac{π}{4}$)≤1+$\sqrt{2}$,
∴x+y的最大值为1+$\sqrt{2}$,最小值为1-$\sqrt{2}$.

点评 本题考查了方程的几何意义的应用及三角函数的应用,同时考查了换元法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图菱形ABCD的边长为4,E,F分别为AB,AD的中点,∠BAD=120°,沿EF将平面AEF折起形成一个五棱锥A-BCDFE.
(1)证明:EF⊥AC;
(2)当翻折形成的五棱锥体积最大时,取CD中点M,求二面角M-AE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式x2-3x+1≤0的解集是(  )
A.{x|x≥$\frac{3-\sqrt{5}}{2}$}B.{x|x≤$\frac{3+\sqrt{5}}{2}$}C.{x|$\frac{3-\sqrt{5}}{2}$≤x≤$\frac{3+\sqrt{5}}{2}$}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列2,-6,12,-20,x,-42中,x=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.多项式(1+mx)n+(1+nx)m(m,n∈N+)的展开式中,x2项系数不小于12mn,那么mn的最小值为(  )
A.4B.3C.16D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a>b>0,a+b=1,则$\frac{4}{a-b}+\frac{1}{2b}$的最小值等于9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=x3,若0≤θ≤$\frac{π}{2}$时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若数列{an}满足a1•a2•a3…an=n2+3n+2
(1)求数列{an}通项公式;
(2)若bn=$\frac{{a}_{n+1}}{{a}_{1}•{a}_{2}•{a}_{3}…{a}_{n}-2}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设M={x|x=a2-b2,a,b∈Z}.求证:
(1)1∈M;
(2)属于M的两个数,其积仍属于M;
(3)-2∉M.

查看答案和解析>>

同步练习册答案