分析 (1)根据对数的意义得出$\frac{1-x}{1+x}$>0,解不等式得出定义域
(2)利用奇偶函数的定义,先看定义域再看解析式即可判断.
(3)先求解f(x)<0,即可得出0<$\frac{1+x}{1-x}$<1,化简得出0<x<1,根据变量的意义得出:0$<x(x-\frac{1}{2})$<1.求解即可.
解答 解:函数f(x)=ln$\frac{1-x}{1+x}$.
(1)$\frac{1-x}{1+x}$>0,
求解即得出:x∈(-1,1)
∴f(x)的定义域:(-1,1)
(2)∵(x)的定义域:(-1,1)关于原点对称
f(-x)=ln$\frac{1+x}{1-x}$=-ln$\frac{1-x}{1+x}$=-f(x)
∴f(x)为奇函数.
(3)∵f(x)<0
∴0<$\frac{1+x}{1-x}$<1,
即可得出:0<x<1
∵不等式f[x(x-$\frac{1}{2}$)]<0.
∴转化为:0$<x(x-\frac{1}{2})$<1.
$\left\{\begin{array}{l}{x<0或x>\frac{1}{2}}\\{\frac{1-\sqrt{17}}{4}<x<\frac{1+\sqrt{17}}{4}}\end{array}\right.$即$\frac{1-\sqrt{17}}{4}$<x<0或$\frac{1}{2}$<x$<\frac{1+\sqrt{17}}{4}$
∴解集为:{x|$\frac{1-\sqrt{17}}{4}$<x<0或$\frac{1}{2}$<x$<\frac{1+\sqrt{17}}{4}$}
点评 本题综合考察了对数函数的性质,不等式的求解属于中档题,关键是转化为常见的不等式求解.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{9}$,+∞) | B. | [$\frac{1}{3}$,+∞) | C. | (-∞,$\frac{1}{9}$] | D. | (-∞,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 工作代码 | 工作名称 | 持续天数 |
| A | 张贴广告、收集作品 | 7 |
| B | 购买展览品 | 3 |
| C | 布置展厅 | 4 |
| D | 展品布置 | 5 |
| E | 宣传语与环境布置 | 2 |
| F | 展前检查 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com