精英家教网 > 高中数学 > 题目详情
7.曲线y=xlnx+1在点(1,1)处的切线方程是y=x.

分析 求出函数的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程.

解答 解:y=xlnx+1的导数为y′=lnx+1,
曲线y=xlnx+1在点(1,1)处的切线斜率为k=1,
可得曲线y=xlnx+1在点(1,1)处的切线方程为y-1=x-1,
即为y=x.
故答案为:y=x.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用直线方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若log3(a+6)=2,则2a=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn=(  )
A.2n+1-2B.3nC.2nD.3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤2}\\{2x+y≥2}\\{x-y≤2}\end{array}\right.$目标函数z=x+2y的最大值是(  )
A.4B.2C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正实数a,b满足2a2-ab-4=0,则3a-b的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=px-$\frac{p}{x}$-2lnx.
(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)=$\frac{2e}{x}$(e为自然对数底数),若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点P在△ABC的BC边所在的直线上从左到右运动,设△ABP与△ACP的外接圆面积之比为λ,当点P不与B,C重合时,(  )
A.λ先变小再变大B.当M为线段BC中点时,λ最大
C.λ先变大再变小D.λ是一个定值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点P(3cosθ,sinθ)在直线x+3y=1上,则sin2θ=-$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB=38米,从点A发出的光线经水平放置于C处的平面镜(大小忽略不计)反射后过点B,已知AC=10米,BC=42米.
(1)求光线AC的入射角θ(入射光线AC与法线CK的夹角)的大小;
(2)求点B相对于平面镜的垂直距离BE与水平距离CE的长.

查看答案和解析>>

同步练习册答案