精英家教网 > 高中数学 > 题目详情
15.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤2}\\{2x+y≥2}\\{x-y≤2}\end{array}\right.$目标函数z=x+2y的最大值是(  )
A.4B.2C.$\frac{8}{3}$D.$\frac{16}{3}$

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y≤2}\\{2x+y≥2}\\{x-y≤2}\end{array}\right.$作出可行域如图:

化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过点A时,直线在y轴上的截距最大,
z有最大值为4.
故选:A.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若f(x)=2cos(ωx+φ)+m(ω>0)对任意实数t都有f(t+$\frac{π}{4}$)=f(-t),且f($\frac{π}{8}$)=-1,则实数m的值等于(  )
A.-3或1B.-1或3C.±3D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若x∈(0,$\frac{π}{2}$),则(  )
A.x2cos2x>1B.$\frac{{x}^{4}}{si{n}^{2}x}$>$\frac{3}{4}$C.x2+cos2x>1D.x4-sin2x>$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex(其中e为自然对数的底数),g(x)=$\frac{n}{2}$x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1-$\frac{n}{2}$,求T(x)在[0,1]上的最大值;
(2)若m=-$\frac{15}{2}$,n∈N*,求使f(x)的图象恒在g(x)图象上方的最大正整数n.[注意:7<e2<$\frac{15}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3-2xf′(1)+1,则f′(0)的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l与直线2x-y+1=0平行,且过点P(1,2),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=xlnx+1在点(1,1)处的切线方程是y=x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x∈R|2x-3≥0},集合B={x∈R|(x-2)(x-1)<0},则A∩B=(  )
A.{x|x≥$\frac{3}{2}$}B.{x|$\frac{3}{2}$≤x<2}C.{x|1<x<2}D.{x|$\frac{3}{2}$<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z的共轭复数为$\overline z$,$\overline z=\frac{2+4i}{z}+z$,则在复平面内复数z对应的点位于(  )
A.第三象限B.第二或第四象限C.第四象限D.第三或第四象限

查看答案和解析>>

同步练习册答案