精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=px-$\frac{p}{x}$-2lnx.
(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)=$\frac{2e}{x}$(e为自然对数底数),若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.

分析 (I)求出函数在x=1处的值,求出导函数,求出导函数在x=1处的值即切线的斜率,利用点斜式求出切线的方程.
(II)求出函数的导函数,令导函数大于等于0恒成立,构造函数,求出二次函数的对称轴,求出二次函数的最小值,令最小值大于等于0,求出p的范围.
(III)通过g(x)的单调性,求出g(x)的最小值,通过对p的讨论,求出f(x)的最大值,令最大值大于等于g(x)的最小值求出p的范围.

解答 解:(I)当p=2时,函数f(x)=2x-$\frac{2}{x}$-2lnx,f(1)=2-2-2ln1=0,
f′(x)=2+$\frac{2}{{x}^{2}}$-$\frac{2}{x}$,
曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2-2=2.
从而曲线f(x)在点(1,f(1))处的切线方程为y-0=2(x-1)
即y=2x-2.
(II)f′(x)=p+$\frac{p}{{x}^{2}}$-$\frac{2}{x}$=$\frac{{px}^{2}-2x+p}{{x}^{2}}$,
令h(x)=px2-2x+p,
要使f(x)在定义域(0,+∞)内是增函数,
只需h(x)≥0在(0,+∞)内恒成立,
由题意p>0,h(x)=px2-2x+p的图象为开口向上的抛物线,
对称轴方程为x=$\frac{1}{p}$∈(0,+∞),
∴h(x)min=p-$\frac{1}{p}$,只需p-$\frac{1}{p}$≥0,
即p≥1时,h(x)≥0,f'(x)≥0
∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞).
(III)∵g(x)=$\frac{2e}{x}$在[1,e]上是减函数,
∴x=e时,g(x)min=2;x=1时,g(x)max=2e,
即g(x)∈[2,2e],
当p<0时,h(x)=px2-2x+p,其图象为开口向下的抛物线,
对称轴x=$\frac{1}{p}$在y轴的左侧,且h(0)<0,
所以f(x)在x∈[1,e]内是减函数.
当p=0时,h(x)=-2x,因为x∈[1,e],所以h(x)<0,
f′(x)=-$\frac{2x}{{x}^{2}}$<0,此时,f(x)在x∈[1,e]内是减函数.
∴当p≤0时,f(x)在[1,e]上单调递减⇒f(x)max=f(1)=0<2,不合题意;
当0<p<1时,由x∈[1,e]⇒x-$\frac{1}{x}$≥0,所以f(x)=p(x-$\frac{1}{x}$)-2lnx≤x-$\frac{1}{x}$-2lnx.
又由(2)知当p=1时,f(x)在[1,e]上是增函数,
∴x-$\frac{1}{x}$-2lnx≤e-$\frac{1}{e}$-2lne=e-$\frac{1}{e}$-2<2,不合题意;
当p≥1时,由(2)知f(x)在[1,e]上是增函数,
f(1)=0<2,又g(x)在[1,e]上是减函数,
故只需f(x)max>g(x)min,x∈[1,e],
而f(x)max=f(e)=p(e-$\frac{1}{e}$)-2lne,g(x)min=2,
即p(e-$\frac{1}{e}$)-2lne>2,解得p>$\frac{4e}{{e}^{2}-1}$,
综上所述,实数p的取值范围是( $\frac{4e}{{e}^{2}-1}$,+∞).

点评 解决曲线的切线问题,常利用导数在切点处的值为切线的斜率求出切线方程;解决函数单调性已知求参数范围问题,常令导函数大于等于0(小于等于0)恒成立,求出参数的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax+b(a>0,a≠1)满足f(x+y)=f(x)•f(y)且f(3)=8.
(1)求a,b的值.
(2)若方程|f(x)-1|=m的有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex(其中e为自然对数的底数),g(x)=$\frac{n}{2}$x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1-$\frac{n}{2}$,求T(x)在[0,1]上的最大值;
(2)若m=-$\frac{15}{2}$,n∈N*,求使f(x)的图象恒在g(x)图象上方的最大正整数n.[注意:7<e2<$\frac{15}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l与直线2x-y+1=0平行,且过点P(1,2),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=xlnx+1在点(1,1)处的切线方程是y=x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A,B是函数f(x)=sin|ωx|与y=-1的图象的相邻两个交点,若|AB|min=2π,则正实数ω=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x∈R|2x-3≥0},集合B={x∈R|(x-2)(x-1)<0},则A∩B=(  )
A.{x|x≥$\frac{3}{2}$}B.{x|$\frac{3}{2}$≤x<2}C.{x|1<x<2}D.{x|$\frac{3}{2}$<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知曲线C的方程为$\frac{{x}^{2}}{{m}^{2}+5}$$+\frac{{y}^{2}}{{m}^{2}+1}$=1(m∈R),命题p:?m∈R使得曲线C的焦距为2,则命题p的否定是(  )
A.?m∈R曲线C的焦距都为2B.?m∈R曲线C的焦距都不为2
C.?m∈R曲线C的焦距不为2D.?m∈R曲线C的焦距不都为2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从1,2,3,4,5,6,7这七个数中,随机抽取3个不同的数,则这3个数的和为偶数概率是(  )
A.$\frac{3}{7}$B.$\frac{17}{35}$C.$\frac{3}{5}$D.$\frac{19}{35}$

查看答案和解析>>

同步练习册答案