精英家教网 > 高中数学 > 题目详情
11.在Rt△ABC中,已知a<b<c,且a、b、c成等比数列,则a:c等于(  )
A.3:4B.($\sqrt{5}$-1):2C.1:($\sqrt{5}$-1)D.$\sqrt{2}$:1

分析 利用△ABC是直角三角形,a、b、c成等比数列的关系,找到a,b,c的关系,消去b,化成“齐次“方程求解

解答 解:∵△ABC是直角三角形,a<b<c,
∴a2+b2=c2
又∵a、b、c成等比数列
∴b2=ac.
所以有:a2+ac=c2
?c2-a2=ac
?$\frac{c}{a}-\frac{a}{c}=1$
设$\frac{a}{c}=x,(x>0)$
则有:$\frac{1}{x}-x=1$
解得:$x=\frac{\sqrt{5}-1}{2}$
所以:$a:c=(\sqrt{5}-1):2$
故选:B.

点评 本题考查了三角形的计算以及构造齐次方程的思想求解.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.$θ=\frac{π}{4}$(ρ≥0)表示的图形是(  )
A.一条直线B.一条射线C.一条线段D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈R.
(1)列表并画出函数f(x)在长度为一个周期的闭区间上的简图;
(2)将函数y=sinx的图象作怎样的变换可得到f(x)的图象:
①先将函数y=sinx的图象向右平移 $\frac{π}{4}$个单位得到函数y=sin(x-$\frac{π}{4}}$)的图象;
②再将函数y=sin(x-$\frac{π}{4}}$)的图象各点横坐标伸长到原来的2倍(纵坐标不变)得到函数y=sin(${\frac{1}{2}$x-$\frac{π}{4}}$)的图象;
③最后再将函数y=sin(${\frac{1}{2}$x-$\frac{π}{4}}$)的图象各点纵坐标伸长到原来的3倍(横坐标不变)得到函数y=3sin(${\frac{1}{2}$x-$\frac{π}{4}}$)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于函数f(x)=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$,给出下列四个命题:
①该函数的图象关于x=2kπ+$\frac{π}{4}$ (k∈Z)对称;
②当且仅当x=kπ+$\frac{π}{2}$ (k∈Z)时,该函数取得最大值1;
③该函数是以π为最小正周期的周期函数;
④当且仅当2kπ+π<x<2kπ+$\frac{3π}{2}$ (k∈Z)时,-$\frac{\sqrt{2}}{2}$≤f(x)<0.
其中正确的是①④.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2sin(ωx+$\frac{π}{6}$),x∈R.在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为$\frac{π}{3}$,则f(x)的最小正周期为(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是某几何体的三视图,则该几何体的体积等于(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在(x-$\frac{a}{\root{3}{x}}$)8的二项展开式中,常数项为28,则实数a的值是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.tan20°+tan40°+$\sqrt{3}$tan20°tan40°的值是(  )
A.60°B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在下列区间中,函数f(x)=2x+x3-2的零点所在的区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

同步练习册答案