精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).以原点为极点, 轴的正半轴为极轴建立极坐标系,点的极坐标方程为.

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线与曲线的两个交点为,求的值.

【答案】(1) .(2)6.

【解析】试题分析:(1)本问考查极坐标与直角坐标的互化,以及参数方程化普通方程,根据公式,易得P点的直角坐标,消去参数可得曲线C的普通方程为;(2)本问考查直线参数方程标准形式下t的几何意义,将直线l的参数方程代入曲线C的普通方程,得到关于t的一元二次方程,根据几何意义有,于是可以求出的值.

试题解析:(1)由极值互化公式知:点的横坐标,点的纵坐标

所以,消去参数的曲线的普通方程为: .

(2)点在直线上,将直线的参数方程代入曲线的普通方程得:

,设其两个根为 ,所以:

由参数的几何意义知: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,以极点为坐标原点,极轴为的正半轴建立平面直角坐标系.

(1)求的参数方程;

(2)已知射线,将逆时针旋转得到,且交于两点, 交于两点,求取得最大值时点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知四边形为矩形,为平行四边形,点在平面内的射影恰好为点的中点为的中点为,且.

(1)求证:平面平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|
(1)若函数y=f(x)+x在R上是增函数,求实数a的取值范围;
(2)若对任意x∈[1,2]时,函数f(x)的图像恒在y=1图像的下方,求实数a的取值范围;
(3)设a≥2时,求f(x)在区间[2,4]内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=x2+bx+c满足f(2)=f(﹣2),且函数的f(x)的一个零点为1. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)对任意的 ,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为自然对数的底数).

(1)设曲线处的切线为,若与点的距离为,求的值;

(2)若对于任意实数 恒成立,试确定的取值范围;

(3)当时,函数上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以(单位:个, )表示面包的需求量, (单位:元)表示利润.

(Ⅰ)求关于的函数解析式;

(Ⅱ)根据直方图估计利润不少于元的概率;

III)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连结AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域是;值域是

查看答案和解析>>

同步练习册答案