精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若的图象与轴有个不同的交点,则实数的取值范围是__________

【答案】

【解析】试题分析:化简,从而化g(x)=|f(x)|﹣ax﹣a的图象与x轴有3个不同的交点为函数|f(x)|与函数y=ax+a的图象有3个不同的交点;作函数的图象,由数形结合求实数a的取值范围.

详解:

∴|f(x)|=

∵g(x)=|f(x)|﹣ax﹣a的图象与x轴有3个不同的交点,

函数|f(x)|与函数y=ax+a的图象有3个不同的交点;

作函数|f(x)|与函数y=ax+a的图象如下,

图中A(﹣1,0),B(2,ln3),

故此时直线AB的斜率k=

当直线ABf(x)=ln(x+1)相切时,设切点为(x,ln(x+1));

=,

解得,x=e﹣1;

此时直线AB的斜率k=

结合图象可知,

≤a<

故答案为:≤a<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)求的极值;

(3)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次考试中某班级50名学生的成绩统计如表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.

经计算样本的平均值,标准差. 为评判该份试卷质量的好坏,从其中任取一人,记其成绩为,并根据以下不等式进行评判

评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.

(1)试判断该份试卷被评为哪种等级;

(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ab是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,为线段的垂直平分线,交与点上异于的任意一点.

的值;

判断的值是否为一个常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数满足,当时,,关于的不等式上有且只有200个整数解,则实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过椭圆: 的左顶点和上顶点,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(1)求椭圆方程;

(2)求线段的长度的最小值;

(3)当线段的长度最小时,在椭圆上有两点,使得,的面积都为,求直线y轴上的截距。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,当时,,现已画出函数在y轴左侧的图象,如图所示,请根据图象.

1)将函数的图象补充完整,并写出函数的递增区间;

2)写出函数的解析式;

3)若函数,求函数的最小值.

查看答案和解析>>

同步练习册答案