【题目】在
中,
分别是角
的对边,且
,若
,
,则
的面积为( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】C
【解析】由正弦定理
得:
a=2RsinA,b=2RsinB,c=2RsinC,
将上式代入已知
得
,
即2sinAcosB+sinCcosB+cosCsinB=0,即2sinAcosB+sin(B+C)=0,
∵A+B+C=π,∴sin(B+C)=sinA,
∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,
∵sinA≠0,∴cosB=
,
∵B为三角形的内角,∴B=
;
将
,
,B=
代入余弦定理b2=a2+c22accosB得:
b2=(a+c)22ac2accosB,即13=162ac(1
),
∴ac=3,∴S△ABC=
acsinB=
.
所以答案是:C
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正四棱柱
中,
,
分别为底面
、底面
的中心,
,
,
为
的中点,
在
上,且
.![]()
(1)以
为原点,分别以
, ![]()
所在直线为
x 轴、
y 轴、
z 轴建立空间直角坐标系,求图中各点的坐标.
(2)以
D 为原点,分别以
, DC,DD1所在直线为
轴、
轴、
轴建立空间直角坐标系,求图中各点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
)
(1)若曲线
在点
处的切线经过点
,求
的值;
(2)若
在
内存在极值,求
的取值范围;
(3)当
时,
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知扇形的圆心角是α,半径为R,弧长为l.
(1)若α=75°,R=12 cm,求扇形的弧长l和面积;
(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点为原点,焦点为F(1,0),过焦点的直线与抛物线交于A,B两点,过AB的中点M作准线的垂线与抛物线交于点P,若|AB|=6,则点P的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com