精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心为原点,且与直线相切.

(1)求圆的方程;

(2)点在直线上,过点引圆的两条切线,切点为,求证:直线恒过定点.

【答案】(1)(2)详见解析

【解析】

试题分析:(1)由圆C与直线相切,得到圆心到直线的距离d=r,故利用点到直线的距离公式求出d的值,即为圆C的半径,又圆心为原点,写出圆C的方程即可;(2)由PA,PB为圆O的两条切线,根据切线的性质得到OA与AP垂直,OB与PB垂直,根据90°圆周角所对的弦为直径可得A,B在以OP为直径的圆上,设出P的坐标为(8,b),由P和O的坐标,利用线段中点坐标公式求出OP中点坐标,即为以OP为直径的圆的圆心坐标,利用两点间的距离公式求出OP的长,即为半径,写出以OP为直径的圆方程,整理后,由AB为两圆的公共弦,两圆方程相减消去平方项,得到弦AB所在直线的方程,可得出此直线方程过(2,0),得证

试题解析:(1)依题意得:圆的半径……………2分

所以圆的方程为……………4分

(2)是圆的两条切线,

在以为直径的圆上。……………6分

设点的坐标为,则线段的中点坐标为

为直径的圆方程为……………8分

化简得:

为两圆的公共弦,

直线的方程为……………10分

所以直线恒过定点……………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足

(Ⅰ)若数列是常数列,求的值;

(Ⅱ)当时,求证:

(Ⅲ)求最大的正数,使得对一切整数恒成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为增强市民的环境保护意识, 面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取名按年龄分组: ,第2 ,第,第,第,得到的频率分布直方图如图所示,

1若从第组中用分层抽样的方法抽取名志愿者参与广场的宣传活动, 应从第组各抽取多少名志愿者?

21的条件下, 该县决定在这名志愿者中随机抽取名志愿者介绍宣传经验, 求第组至少有名志愿者被抽中的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别为,已知.

)求角的值;

)若,当取最小值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象上有一点列,点轴上的射影是,且 (), .

(1)求证: 是等比数列,并求出数列的通项公式;

(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.

(3)设四边形的面积是,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点,∠ADP=45°.

(1)求证:AF∥平面PCE.

(2)求证:平面PCD⊥平面PCE.

(3)若AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC底面ABCD,且PC=2,E是侧棱PC上的动点

(1)求四棱锥P-ABCD的体积;

(2)证明:BDAE。

(3)求二面角P-BD-C的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1时,设,求证:对任意的

2时,若对任意,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列算法语句,将输出的A值依次记为a1a2ana2015;已知函数fx=a2sinωx+φ)(ω0|φ|)的最小正周期是a1,且函数的图象关于直线x=对称。

)求函数表达式;

)已知ABC中三边a,b,c对应角A,B,Ca4b4A30°,求

查看答案和解析>>

同步练习册答案