精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|x2<2-x},B={x|-1<x<2},则A∪B=(  )
A.(-1,1)B.(-2,2)C.(-1,2)D.(-2,1)

分析 求出不等式x2<2-x的解集,从而求出A∪B即可.

解答 解:集合A={x|x2<2-x}={x|-2<x<1},B={x|-1<x<2},
则A∪B=(-2,2),
故选:B.

点评 本题考查了集合的运算,考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.甲、乙、丙、丁四个物体同时从同一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4},关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),有以下结论:
①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲
其中,不正确的序号为(  )
A.①②B.①②③④C.③④⑤D.②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
收入x(万元)8.28.610.011.311.9
支出y(万元)6.27.58.08.59.8
根据上表可得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=0.76,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,据此估计,该社区一户收入为5万元家庭年支出约为(  )
A.3.8万元B.3.9万元C.4.1万元D.4.2万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(g(x))=sin2x,g(x)=tan({x+\frac{π}{4}})$,则$f(-\frac{1}{7})$=(  )
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.$-\frac{24}{25}$D.$-\frac{24}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z满足$z=\frac{2i}{1+i}$,则$z•\overline z$=(  )(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)是定义在(0,+∞)上的增函数,且满足条件以下条件:f(xy)=f(x)+f(y),f(2)=1.
(1)求f(4)的值
(2)求证:f(8)=3.
(3)求不等式f(x)>3+f(x-2)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x=lnπ,y=log${\;}_{\frac{1}{2}}$π,z=e-2,则(  )
A.x<y<zB.y<x<zC.y<z<xD.z<y<x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-2ax+a.
(1)当a=2时,求函数f(x)在[1,5]上的值域;
(2)当a=1时,函数f(x)的图象恒在直线y=2x+m的图象上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知矩形ABCD,AB=1,BC=$\sqrt{3}$,将平面ABC沿直线AC翻折,使得BD=$\frac{\sqrt{7}}{2}$,则三棱锥B-ACD的体积为$\frac{\sqrt{3}}{8}$.

查看答案和解析>>

同步练习册答案