精英家教网 > 高中数学 > 题目详情
8.已知矩形ABCD,AB=1,BC=$\sqrt{3}$,将平面ABC沿直线AC翻折,使得BD=$\frac{\sqrt{7}}{2}$,则三棱锥B-ACD的体积为$\frac{\sqrt{3}}{8}$.

分析 建立空间直角坐标系,根据各边的长度列方程求出棱锥的高.

解答 解:以B为原点建立如图所示的空间坐标系,
则AB=CD=1,AD=BC=$\sqrt{3}$,∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}=2$.BD=$\frac{\sqrt{7}}{2}$.
∴A(-1,0,0),B(0,0,0),C(0,$\sqrt{3}$,0).
设D(x,y,z),则$\left\{\begin{array}{l}{(x+1)^{2}+{y}^{2}+{z}^{2}=3}\\{{x}^{2}+{y}^{2}+{z}^{2}=\frac{7}{4}}\\{{x}^{2}+(y-\sqrt{3})^{2}+{z}^{2}=1}\end{array}\right.$,解得z=$\frac{3}{4}$.
∴三棱锥D-ABC的高h=$\frac{3}{4}$.
∴三棱锥的体积V=$\frac{1}{3}×\frac{1}{2}×AB×BC×h$=$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×\frac{3}{4}$=$\frac{\sqrt{3}}{8}$.
故答案为:$\frac{\sqrt{3}}{8}$.

点评 本题考查了棱锥的体积计算,求出棱锥的高是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2<2-x},B={x|-1<x<2},则A∪B=(  )
A.(-1,1)B.(-2,2)C.(-1,2)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设复数z1=1+2i,z2=1-i,则|z1+$\frac{4}{{z}_{2}}$|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=2sinxsin(x+$\frac{π}{2}$)的零点个数为无数个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinx═$\frac{\sqrt{2}}{3}$,试求满足下列条件的角x:
(1)x∈[$\frac{π}{2},π$];
(2)x∈[-$\frac{3}{2}$π,-π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用数学归纳法证明:
(1)2+4+6+…+2n=n2+n;
(2)12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$;
(3)13+23+33+…+n3=[$\frac{1}{2}$n(n+1)]2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若(lg20+lg5)($\sqrt{2}$)x=4,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知中心在原点O,焦点在x轴上,离心率为$\frac{{\sqrt{3}}}{2}$的椭圆C过点$(\sqrt{2},\frac{{\sqrt{2}}}{2})$.
(1)求椭圆C的标准方程;
(2)设B为椭圆的上顶点,P、Q为椭圆C上异于点B的任意两点.
(ⅰ)设P、Q两点的连线不经过原点,且直线OP、PQ、OQ的斜率依次成等比数列,求△OPQ面积的取值范围;
(ⅱ)当BP⊥BQ时,若点B在线段PQ上的射影为点M,求点M的轨迹方程.

查看答案和解析>>

同步练习册答案