精英家教网 > 高中数学 > 题目详情
16.执行如图的程序框图,若输入的x的值为29,则输出的n的值为(  )
A.1B.2C.3D.4

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量x的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
x=29,n=0
满足条件log${\;}_{2}^{29}$<5,执行循环体,x=29+2=31,n=1
满足条件log${\;}_{2}^{31}$<5,执行循环体,x=31+2=33,n=2
不满足条件log${\;}_{2}^{33}$<5,退出循环,输出n的值为2.
故选:B.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.小于90°的角是锐角
B.钝角必是第二象限角,第二象限角必是钝角
C.第三象限的角大于第二象限的角
D.角α与角β的终边相同,角α与角β可能不相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C1,C2的极坐标方程分别为ρ=2cosθ,$\sqrt{2}ρsin(θ-\frac{π}{4})=\frac{{\sqrt{3}}}{2}$,射线θ=φ,$θ=φ+\frac{π}{4}$,$θ=φ-\frac{π}{4}$与曲线C1交于(不包括极点O)三点A,B,C.
(Ⅰ)求证:$|OB|+|OC|=\sqrt{2}|OA|$;
(Ⅱ)当$φ=\frac{π}{12}$时,求点B到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分别截取AE=AH=CF=CG=x(x>0),设四边形EFGH的面积为y.
(1)写出四边形EFGH的面积y与x之间的函数关系;
(2)求当x为何值时y取得最大值,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.
(1)求A∪B,(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在斜三棱柱中ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,点P为AC1上的一个动点,则点P在底面ABC上的射影H必在(  )
A.直线AB上B.直线BC上C.直线AC上D.△ABC内部

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数y=f(x)的图象关于x=1对称,且在(1,+∞)上单调递增,设$a=f(\frac{1}{2})$,b=f(2),c=f(3),则a,b,c的大小关系为(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=2\sqrt{3}sinωxcosωx-2{cos^2}ωx+1(ω>0)$,且y=f(x)的图象与直线y=2的两个相邻公共点之间的距离为π.
(1)求函数f(x)的解析式,并求出f(x)的单调递增区间;
(2)将函数f(x)的图象上所有点向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,设A,B,C为△ABC的三个内角,若g(B)-2=0,且向量$\overrightarrow m=(cosA,cosB)$,$\overrightarrow n=(1,sinA-cosAtanB)$,求$\overrightarrow m•\overrightarrow n$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合A={x||2x|>1},B={x|2x2-x-1<0},则A∩B=(  )
A.{x|-1<x<2}B.$\left\{{x\left|{\frac{1}{2}<x<1}\right.}\right\}$C.$\left\{{x\left|{-\frac{1}{2}<x<1}\right.}\right\}$D.{x|x>1}

查看答案和解析>>

同步练习册答案