精英家教网 > 高中数学 > 题目详情
8.已知函数y=f(x)的图象关于x=1对称,且在(1,+∞)上单调递增,设$a=f(\frac{1}{2})$,b=f(2),c=f(3),则a,b,c的大小关系为(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

分析 根据题意,由函数轴对称的性质可得f($\frac{1}{2}$)=f($\frac{3}{2}$),又由函数在(1,+∞)上的单调性,可得f(2)<f( $\frac{5}{2}$)<f(3),即可得答案.

解答 解:根据题意,函数y=f(x)的图象关于x=1对称,则f($\frac{1}{2}$)=f($\frac{3}{2}$),即$a=f(\frac{1}{2})$=f($\frac{3}{2}$),
又由函数f(x)在(1,+∞)上单调递增,则f($\frac{1}{2}$)<f(2)<f(3),
即a<b<c,
故选:D.

点评 本题考查函数单调性与对称性的综合运用,关键在于借助函数的对称性,得到f($\frac{1}{2}$)=f( $\frac{3}{2}$),然后利用对称性来比较大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知m是实数,命题p:函数$f(x)={log_2}({x^2}+m)$是定义域为R的偶函数,命题q:函数g(x)=(m2-2m-2)x是R上的减函数,若p∨q为真命题,p∧q为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:x2=2py(p>0)的焦点为F,点P为抛物线C上的一点,点P处的切线与直线y=x平行,且|PF|=3,则抛物线C的方程为(  )
A.x2=4yB.x2=8yC.x2=6yD.x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图的程序框图,若输入的x的值为29,则输出的n的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(x,1)$,$\overrightarrow u=\overrightarrow a+2\overrightarrow b\;,\;\overrightarrow v=2\overrightarrow a-\overrightarrow b$,且 $\overrightarrow u$∥$\overrightarrow v$,则实数x的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P是平行四边形ABCD所在平面外一点,如果$\overrightarrow{AB}$=(2,-1,-4),$\overrightarrow{AD}$=(4,2,0),$\overrightarrow{AP}$=(-1,2,-1)
(1)求证:$\overrightarrow{AP}$是平面ABCD的法向量
(2)求平行四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.射手小张在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13,计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{\frac{5}{x+3}≥1}\\{{x}^{2}+x-2≥0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)的图象如图所示,则有(  )
A.0<f'(3)<f'(4)<f(4)-f(3)B.0<f(4)-f(3)<f'(3)<f'(4)C.0<f'(4)<f'(3)<f(4)-f(3)D.0<f'(4)<f(4)-f(3)<f'(3)

查看答案和解析>>

同步练习册答案