精英家教网 > 高中数学 > 题目详情
11.若f(x)的图象如图所示,则有(  )
A.0<f'(3)<f'(4)<f(4)-f(3)B.0<f(4)-f(3)<f'(3)<f'(4)C.0<f'(4)<f'(3)<f(4)-f(3)D.0<f'(4)<f(4)-f(3)<f'(3)

分析 在函数的图象上,画出切线,以及f(4)-f(3),即可判断选项.

解答 解:如图:函数的图象上的切线的斜率f'(3)<f'(4),
并且$\frac{f(4)-f(3)}{4-3}=f(4)-f(3)$,∴0<f(4)-f(3)<f'(4),
0<f'(4)<f(4)-f(3)

故选:D.

点评 本题考查切线方程的应用,函数的导数的几何意义,难度比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数y=f(x)的图象关于x=1对称,且在(1,+∞)上单调递增,设$a=f(\frac{1}{2})$,b=f(2),c=f(3),则a,b,c的大小关系为(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知m>0,n>0,则当81m2+n2+$\frac{729}{8mn}$取得最小值时,m-n的值为(  )
A.-4B.4C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合A={x||2x|>1},B={x|2x2-x-1<0},则A∩B=(  )
A.{x|-1<x<2}B.$\left\{{x\left|{\frac{1}{2}<x<1}\right.}\right\}$C.$\left\{{x\left|{-\frac{1}{2}<x<1}\right.}\right\}$D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=logax+1(a>0,a≠1)恒过点(m,n),其中(m,n)满足方程3a2x+2b2y=a2b2,且a2+4b2=t,则t的最小值为14+4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正实数x,y满足2<2x+y<4,则x2+y2的取值范围是(  )
A.$({\frac{4}{5},16})$B.$({\frac{{2\sqrt{5}}}{5},16})$C.(1,16)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知角α终边上一点P(-3,4),求$\frac{{cos({\frac{π}{2}+α})•sin({-π+α})}}{{cos({\frac{3π}{2}-α})•sin({\frac{9π}{2}+α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在极坐标系中,曲线C的方程为$ρ=4cosθ+2sinθ-\frac{3}{ρ}$,以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(Ⅰ)求曲线C的参数方程;
(Ⅱ)在直角坐标系中,点M(x,y)是曲线C上一动点,求x+y的最大值,并求此时点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.比较sin$\frac{23π}{5}$与cos(-$\frac{17π}{4}$)的大小关系为

查看答案和解析>>

同步练习册答案